
Practical Transformation
Using XSLT and XPath

(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

+//ISBN 978-1-894049::CSL::Courses::PTUX//DOCUMENT Practical Transformation Using XSLT and XPath 2011-02-11 21:00UTC//EN
Fourteenth Edition - 2011-02-11 http://www.CraneSoftwrights.com
ISBN 978-1-894049-24-5 Copyright © Crane Softwrights Ltd.

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

The functions covered in this chapter are as follows.

Functions related to boolean data types:
- boolean()

- casting an argument to a boolean value
- false()

- a fixed boolean value
- lang()

- finding the in-scope language as specified by xml:lang=
- not()

- inverting the boolean value of the argument
- true()

- a fixed boolean value

Functions related to number data types:
- abs()

- returning the absolute value
- ceiling()

- rounding a number up
- floor()

- rounding a number down
- number()

- casting an argument to a number
- round()

- rounding a number
- round-half-to-even()

- rounding a number

Functions related to string data types:
- codepoint-equal()

- Unicode string comparison
- codepoints-to-string()

- Unicode string conversion
- compare()

- string comparison
- concat()

- string concatenation
- contains()

- string detection

Page 274 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to string data types (cont.):
- default-collation()

- obtaining the default collation
- ends-with()

- establish the presence of a string
- format-number()

- adding punctuation and controlling number display
- lower-case()

- string case folding
- matches()

- regular expression matching
- normalize-space()

- normalizing extraneous spaces in a string
- normalize-unicode()

- normalizing Unicode characters in a string
- replace()

- regular expression replacement
- starts-with()

- establishing the presence of a string
- string()

- casting an argument to a string
- string-join()

- join a sequence of strings into a single string
- string-length()

- finding the length of a string
- string-to-codepoints()

- Unicode string conversion
- substring()

- returning a portion of a string
- substring-after()

- returning a portion of a string
- substring-before()

- returning a portion of a string
- tokenize()

- regular expression tokenizing
- translate()

- translating characters found in a string
- upper-case()

- string case folding

Page 275 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Practical Transformation
Using XSLT and XPath

(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

Copyrights
- Pursuant to http://www.w3.org/Consortium/Legal/ipr-notice.html , some information included in this

publication is from copyrighted material from the World Wide Web Consortium as described in
http://www.w3.org/Consortium/Legal/copyright-documents.html : Copyright (C) 1995-2011 World
Wide Web Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. The status and titles of the documents referenced are listed in the
body of this work where first used.

- Other original material herein is copyright (C) 1998-2011 Crane Softwrights Ltd. This is commercial material and may not
be copied or distributed by any means whatsoever without the expressed permission of Crane Softwrights Ltd.

Disclaimer
- By purchasing and/or using any product from Crane Softwrights Ltd. ("Crane"), the product user ("reader") understands

that this product may contain errors and/or other inaccuracies that may result in a failure to use the product itself or other
software claiming to utilize any proposed or finalized standards or recommendations referenced therein. Consequently, it
is provided "AS IS" and Crane disclaims any warranty, conditions, or liability obligations to the reader of any kind. The
reader understands and agrees that Crane does not make any express, implied, or statutory warranty or condition of any
kind for the product including, but not limited to, any warranty or condition with regard to satisfactory quality, merchantable
quality, merchantability or fitness for any particular purpose, or such arising by law, statute, usage of trade, course of dealing
or otherwise. In no event will Crane be liable for (a) punitive or aggravated damages; (b) any direct or indirect damages,
including any lost profits, lost savings, damaged data or other commercial or economic loss, or any other incidental or
consequential damages even if Crane or any of its representatives have been advised of the possibility of such damages or
they are foreseeable; or (c) for any claim of any kind by any other party. Reader acknowledges and agrees that they bear
the entire risk as to the quality of the product.

Page 1 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to sequences:
- avg()

- return the average of members of a numerical sequence
- count()

- return a count of members of the sequence
- deep-equal()

- return an indication of two sequences being identical
- distinct-values()

- return a sequence with duplicate members removed
- empty()

- return an indication of the sequence being empty
- exactly-one()

- return an indication of the cardinality of a sequence
- exists()

- return an indication of the sequence not being empty
- index-of()

- return index pointers into a sequence
- insert-before()

- return a sequence with members inserted
- max()

- return the maximum value of the members of the numeric sequence
- min()

- return the minimum value of the members of the numeric sequence
- one-or-more()

- return an indication of the cardinality of a sequence
- remove()

- return a sequence with a member removed
- reverse()

- return the reverse of a sequence
- subsequence()

- return a portion of a sequence
- sum()

- return a sum of sequence members
- unordered()

- return an unordered sequence
- zero-or-one()

- return an indication of the cardinality of a sequence

Page 276 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath
(Prelude) (cont.)

Preface

The main content of this book is in an unconventional style primarily in bulleted form
- derivations of the book are used for instructor-led training, requiring the succinct

presentation
- note the exercises included in instructor-led training sessions are not included in

the book
- derivations of the book can be licensed and branded for customer use in delivering

training
- the objective of this style is to convey the essence and details desired in a compact, easily

perused form, thereby reducing the search for key words and phrases in lengthy paragraphs
- each chapter of the book corresponds to a module of the training
- each page of the book corresponds to a frame presented in the training
- a summary of subsections and their pages is at the back of the book

Much of the content is hyperlinked both internally and externally to the book in the 1-up
full-page sized electronic renditions:

- (note the Acrobat Reader "back" keystroke sequence is "Ctrl-Left")
- page references (e.g.: Chapter 2 Getting started with XSLT and XPath (page 46))
- external references (e.g.: http://www.w3.org/TR/1999/REC-xslt-19991116)
- chapter references in book summary
- section references in chapter summary
- subsection references in table of contents at the back of the book
- hyperlinks are not present in the cut, stacked, half-page, or 2-up renditions of the material

Page 2 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to date and time:
- adjust-date-to-timezone()

- return adjusted date
- adjust-dateTime-to-timezone()

- return adjusted date and time
- adjust-time-to-timezone()

- return adjusted time
- current-date()

- return date/time component
- current-dateTime()

- return date/time component
- current-time()

- return date/time component
- dateTime()

- return date/time component
- day-from-date()

- return date/time component
- day-from-dateTime()

- return date/time component
- days-from-duration()

- return date/time component
- format-date()

- format date string
- format-dateTime()

- format date and time string
- format-time()

- format time string
- hours-from-dateTime()

- return date/time component
- hours-from-time()

- return time component
- hours-from-duration()

- return date/time component
- implicit-timezone()

- return date/time component

Page 277 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath

- Introduction - Transforming structured information
- Chapter 1 - The context of XSLT and XPath
- Chapter 2 - Getting started with XSLT and XPath
- Chapter 3 - XPath data model
- Chapter 4 - Processing model
- Chapter 5 - Transformation environment
- Chapter 6 - Transform and data management
- Chapter 7 - Data type expressions and functions
- Chapter 8 - Constructing the result tree
- Chapter 9 - Sorting and grouping
- Annex A - XML to HTML transformation
- Annex B - XSL formatting semantics introduction
- Annex C - Instruction, function and grammar summaries
- Annex D - Tool questions
- Conclusion - Where to go from here?

Series: Practical Transformation Using XSLT and XPath

Reference:

Pre-requisites:

- knowledge of XML syntax
- knowledge of HTML

Outcomes:

- awareness of documentation
- introduction to objectives and purpose
- exposure to example scripts
- understanding of processing model and data model
- basic script and module writing for transformation
- an overview of every element in the recommendations
- an overview of every function in the recommendations
- introduction to XSL formatting semantics

Page 3 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to date and time (cont.):
- minutes-from-dateTime()

- return date/time component
- minutes-from-duration()

- return date/time component
- minutes-from-time()

- return date/time component
- month-from-date()

- return date/time component
- month-from-dateTime()

- return date/time component
- months-from-duration()

- return date/time component
- seconds-from-dateTime()

- return date/time component
- seconds-from-duration()

- return date/time component
- seconds-from-time()

- return date/time component
- timezone-from-date()

- return date/time component
- timezone-from-time()

- return date/time component
- timezone-from-dateTime()

- return date/time component
- year-from-date()

- return date/time component
- year-from-dateTime()

- return date/time component
- years-from-duration()

- return date/time component

Page 278 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transforming structured information
Introduction - Practical Transformation Using XSLT and XPath

This book is oriented to the stylesheet writer, not the processor implementer
- certain behaviors important to an implementer are not included
- objective to help a stylesheet writer understand the language facilities needed to solve

their problem
- a language reference arranged thematically to assist comprehension
- a different arrangement than the Recommendations themselves

This book covers every element, every attribute and every function of both XSLT and XPath,
both versions 1.0 and 2.0:

- content specific to XPath 1.0 is marked with a "P1" icon at the beginning of the line
- content specific to XPath 2.0 is marked with a "P2" icon at the beginning of the line
- content specific to XSLT 1.0 is marked with a "T1" icon at the beginning of the line
- content specific to XSLT 2.0 is marked with a "T2" icon at the beginning of the line

First two chapters are introductory in nature
- overview of context of XSLT and XPath amongst other members of the XML family of

Recommendations
- basic flow diagrams illustrate use of XSLT
- basic terminology and approaches are defined and explained

Third and fourth chapters cover essential bases of understanding
- data model and processing model for document representation and behavior
- important to understand the models in order to apply the language features

Fifth through ninth chapters address XSLT vocabulary
- every element, attribute and function not already covered when describing the models
- no particular order of the chapters, but example code only uses constructs already

introduced in earlier content

Page 4 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Functions related to node data types:
- base-uri()

- obtaining a node's base URI
- data()

- obtaining a node's data
- document-uri()

- obtaining a node's document URI
- generate-id()

- establishing uniqueness in source node trees
- local-name()

- obtaining the local part of a node name
- name()

- obtaining a node name
- namespace-uri()

- obtaining the namespace URI for a node
- nilled()

- obtaining a node's nilled status
- node-name()

- obtaining a node name
- root()

- obtaining the root node of a tree
- static-base-uri()

- obtaining the static base URI

Qualified name functions:
- in-scope-prefixes()

- return a set of prefixes
- local-name-from-QName()

- return a local name
- namespace-uri-for-prefix()

- return a namespace URI
- namespace-uri-from-QName()

- return a namespace URI
- prefix-from-QName()

- return a namespace prefix
- QName()

- return a qualified name
- resolve-QName()

- resolve a qualified name

Page 279 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transforming structured information (cont.)
Introduction - Practical Transformation Using XSLT and XPath

First two annexes overview HTML and XSL-FO as related to using XSLT
- considerations of using XSLT features to address basic result vocabulary requirements

Third annex includes a number of handy summaries derived from the Recommendations
- alphabetical lists of elements and functions
- print-oriented summaries of all productions

Last annex addresses questions regarding tools
- lists of questions for processor implementers when assessing tool capabilities

External ZIP file included with the purchase of the book
- all of the complete scripts utilized in the documentation as stand-alone files ready for

analysis and/or modification
- sample invocation scripts for Windows environments

Page 5 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

Other functions:
- current()

- current node access
- encode-for-uri()

- return an encoded string
- escape-html-uri()

- return an encoded string
- id()

- accessing ID values in source node trees
- idref()

- accessing references to ID values in source node trees
- iri-to-uri()

- return an encoded string
- key()

- accessing key nodes from key tables
- regex-group()

- regular expression group retrieval
- resolve-uri()

- return an absolute URI

Page 280 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 1 - The context of XSLT and XPath

- Introduction - Overview
- Section 1 - The XML family of Recommendations
- Section 2 - Transformation data flows

Outcomes:

- an understanding of the roles of and relationships between the members of the XML
family of Recommendations (related to XSLT and XPath)

- an awareness of available documentation and a small subset of publicly available resources
- an understanding of the data flows possible when using XSLT in different contexts and

scenarios

Page 6 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using expression functions
Chapter 7 - Data type expressions and functions
Section 1 - Expression function usage

Formal function prototypes are in the Recommendations
- only summarized in this material

- see Annex C Instruction, function and grammar summaries (page 478) for indexed
list of functions

- formal language not copied from Recommendations into this material
- this material does not attempt to be as rigorous as the Recommendations

Examples of some of the uses of expressions:
select=" expression"

- evaluation of an arbitrary expression
- selection of nodes for processing

select=" expression,..., expression"

- evaluation of a sequence of arbitrary expressions
literal-result-element-attr="{ expression}"

literal-result-element-attr="{ expression,..., expression}"

- attribute value template calculation
- end result converted to a string and injected into result-tree attribute node
- not applicable for most stylesheet instruction attributes

- acceptable for specifying the names when constructing named nodes

 if (effective-boolean-value-expression)

test=" effective-boolean-value-expression"

- used in conditionals
- end result of the expression is converted to its effective Boolean value

function-name(function-arguments)

- a call to a built-in function
xmlns: function-namespace=" URI"
...
function-namespace: function-name(function-arguments)

- a call to an extension function supported by the processor
- a call to a declared user-defined function
- a call to a standard function when using a standard URI

- e.g. xmlns:fn="http://www.w3.org/2005/xpath-functions"

Page 281 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Overview
Chapter 1 - The context of XSLT and XPath

This chapter reviews the roles of the following Recommendations in the XML family and
overviews contexts in which XSLT and XPath are used.

Extensible Markup Language (XML)
- hierarchically describes an instance of information

- using embedded markup according to rules specified in the Recommendation
- information is identified with a vocabulary of labels (a set of element types each

with a name, a structure and optionally some attributes) described by the user
- optionally specifies a mechanism for the formal definition of a vocabulary

- controls the instantiation of new information
- validates existing information is using the expected set of labels

XML Path Language (XPath)
- the document model and addressing basis for XSLT and XQuery

Extensible Stylesheet Language Family (XSLT/XSL/XSL-FO)
- XSL Transformations (XSLT)

- specifies the transformation of structured information into a hierarchy using the
same or a different document model primarily for the kinds of transformations for
use with XSL

- XSL (Formatting Semantics, a.k.a. XSL-FO)
- specifies the vocabulary and semantics of the formatting of information for paginated

presentation
- colloquially referred to at times as XSL Formatting Objects

Namespaces
- disambiguates vocabularies when mixing information from different sources
- identifies the dictionary for the labels used to mark up information

Stylesheet Association
- names resources as candidates to be utilized as a stylesheet for processing an XML

document
- does not modify the structural markup of the data
- used to specify the rendering of an instance of information

Page 7 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using number functions
Chapter 7 - Data type expressions and functions
Section 2 - Number expressions

Double-precision binary floating-point number operators and functions:
- the range of values is defined by 64-bit IEEE Standard for Binary Floating-Point

Arithmetic specification (ANSI/IEEE Std. 754-1985):
- special values are positive and negative infinity, positive and negative zero,

"Not-a-Number" (NaN)
- cast, respectively in either xs:float or xs:decimal , from

'INF' ,'-INF' ,0,'-0' ,'NaN'
- effective Boolean value of positive and negative zero and NaN are false , all other

numbers test true

number(optional-expression)

- returns the conversion of the string value of the addressed item into an xs:double value
- specifying a string argument ignores leading and trailing white space and calculates NaN

if not valid
- specifying a node set converts the value of the first member of the node set (in document

order) to a string before converting to a number
- specifying a node set of more than a singleton is an error
- not specifying an argument converts the current node to a string before converting to a

number
- specifying a Boolean argument converts true to 1 and false to 0

Page 282 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/REC-xml
- http://www.w3.org/TR/xml11

A Recommendation fulfilling two objectives for information representation:
- expressing information in a hierarchical arrangement using XML-defined markup
- restricting and/or validating the use of XML markup according to user-specified

constraints

Document description and data description
- the roots of XML are from the ISO specification for Standard Generalized Markup

Language (SGML) used for document description
- any hierarchical arrangement can be expressed using XML
- any non-hierarchical arrangement can be expressed hierarchically using XML
- XML now commonly used for the description of many kinds of data because of the

platform independence of the use of markup and Unicode text

XML defines basic constraints on physical and logical hierarchies of syntax
- the concept of well-formedness with a syntax for markup languages

- the vocabulary and hierarchy of constructs in an instance of information is implicit
according to the specified rules governing syntactic structures

- a language for specifying how a system can constrain the allowed logical hierarchy of
information structures

- the semantics of the user's vocabulary are not formally defined using XML constructs
- can be described in XML comments using natural language
- are defined by the applications acting on the information

Page 8 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using number functions (cont.)
Chapter 7 - Data type expressions and functions
Section 2 - Number expressions

Lexical space includes insignificant zero digits
- 0001. = 1. = 1.000 = 001.00
- to the left of significant digits to the left of the decimal separator
- to the right of significant digits to the right of the decimal separator
- E-notation allowed: e.g. 12.345E6 is equivalent to 12345000.

- "E6" represents "10 to the power of 6" which is 1000000.
- reserved lexical strings for special values: 'INF' ,'-INF' ,'-0' ,'NaN'

 Comparison space distinction between different types of numbers
- types defined in W3C Schema data types http://www.w3.org/TR/xmlschema-2/
- augmented by XPath 2.0

- see Data types (page 73)
- xs:double - 64-bit binary floating point (same comparison space as XPath 1.0) IEEE

- positive and negative numbers with just over 300 powers of 10 both positive (whole)
and negative (part)

- xs:float - 32-bit binary floating point IEEE
- positive and negative numbers with just over 37 powers of 10 both positive (whole)

and negative (part)
- xs:decimal - a decimal number of at least 18 digits (typically many more)

- no precision problems with a decimal as there are with binary representations
- e.g. xs:double(50.2) div 10 returns 5.0200000000000005
- e.g. xs:decimal(50.2) div 10 returns 5.02

- xs:integer - a whole number (no decimal point) with implementation-defined limits
- xs:long - an integer from -9223372036854775808 up to 9223372036854775807 (19

digits) = ±2**63
- xs:int - an integer from -2147483648 up to 2147483647 = ±2**31
- xs:short - an integer from -32768 up to 32767 = ±2**15
- xs:byte - an integer from -128 up to 128 = ±2**7
- xs:nonPositiveInteger - an integer that is zero or negative
- xs:negativeInteger - an integer that is negative
- xs:nonNegativeInteger - an integer that is zero or positive
- xs:positiveInteger - an integer that is positive
- xs:unsignedLong - an integer from zero up to 18446744073709551615 = 2**64 - 1
- xs:unsignedInt - an integer from zero up to 4294967295 = 2**32 - 1
- xs:unsignedShort - an integer from zero up to 65535 = 2**16 - 1
- xs:unsignedByte - an integer from zero up to 255 = 2**8 - 1

Page 283 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Physical hierarchy (the content organization):
- single collection of information ("XML instance") from multiple physical resources

("XML entities")
- an XML file is not required to be comprised of more than one physical entity
- physical modularization typically used to manage a large information set in smaller

fragments
- inappropriately used for XML fragment sharing due to parsing context

- resource is nested syntactically using XML external parsed general entity construct
- each physical resource has a well-formed logical hierarchy

- unparsed data entities in a declared notation are outside of the parsed hierarchy

a.xml

a.xml:

<!ENTITY b SYSTEM "../bdir/b.xml">

<!ENTITY c SYSTEM "c.xml">

<!ENTITY d SYSTEM "../bdir/ddir/d.xml">

<!ENTITY e SYSTEM "../bdir/e.xml">

<!NOTATION gif-file SYSTEM "gif-uri">

<!ENTITY x SYSTEM "x.gif" NDATA gif-file>

&b;

b.xml

c.xml

&c;

&d;

d.xml

e.xml

&e;

Files:

 adir/a.xml

 adir/c.xml

 adir/x.gif

 bdir/b.xml

 bdir/e.xml

 bdir/ddir/d.xml

ent="x"

x.gif

ent="x"

Page 9 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using number functions (cont.)
Chapter 7 - Data type expressions and functions
Section 2 - Number expressions

operators "+", "- ", "* "
- traditional arithmetic operations for addition, subtraction and multiplication

operators "div " and "mod"
- traditional division operations of division and modulus

- the slash "/ " cannot be used for division as it is a location path separator in the
XPath grammar

- modulus is not implemented the same as the IEEE remainder operation
- division by zero is a runtime error

 operator "idiv "
- integer cast after performing traditional division operation
- truncates fractional part (no rounding)
- division by zero is a runtime error

 operator "to "
- returns a sequence of integers inclusive of both operands of this operator
- e.g. "1 to 3 " returns the sequence "(1, 2, 3) "
- 01 <xsl:text>Dan: "Say goodnight, Dick."&nl;</xsl:text>

02 <xsl:for-each select="1 to $count">
03 <xsl:text>Dick (</xsl:text>
04 <xsl:value-of select="."/>
05 <xsl:text>): "Goodnight Dick!"&nl;</xsl:text>
06 </xsl:for-each>

- remember to cast using xs:integer(value) when not using integers

grouping (and)
- performs the traditional grouping to override precedence

Page 284 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Logical hierarchy (the information):
- single collection of information ("XML instance") comprised of multiple nested containers

(XML elements, attributes, text, etc.) where each container is labeled with a name
- each piece is expressed using an XML construct at a user-defined granularity
- the nested breakdown of the information is hierarchical

01 <?xml version="1.0"?>
02 <purchase>
03 <customer db="cust123"/>
04 <product db="prod345">
05 <amount>23.45</amount>
06 </product>
07 </purchase>

The implicit document model exists by the mere presence of logical hierarchy
- the markup of the XML constructs demarcates the locations of the information in the

hierarchy
- data model is comprised of family-tree-like relationships of parent, child, sibling, etc.

purchase

customer
 product

amount

(XML instance)

db
db

(text)

A logical hierarchy need not come from XML syntax
- through "data projection" the logical tree of any information that can be organized as if

it came from XML syntax is indistinguishable from that tree that actually does come
from XML syntax

- the data model doesn't retain whatever syntax was used (XML or otherwise) to create
the logical tree

Page 10 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using number functions (cont.)
Chapter 7 - Data type expressions and functions
Section 2 - Number expressions

 abs(number)

- returns the absolute value of the given number
- e.g. abs(-1.23) returns 1.23
- e.g. abs(4.56) returns 4.56
- the data type of the return value is the base data type of the argument

- one of xs:float , xs:double , xs:decimal or xs:integer

floor(number) and ceiling(number)

- returns closest whole number towards negative and positive infinity (respectively)
- e.g. floor(4.9) returns 4.
- e.g. floor(-4.9) returns -5.
- the data type of the return value is the base data type of the argument

- one of xs:float , xs:double , xs:decimal or xs:integer

round(number)

- returns the closest whole number, except in the following situations:
- the arguments NaN, positive infinity, negative infinity, positive zero and negative

zero all return the argument as the result
- an argument between -0.5 and zero returns negative zero
- an argument equidistant to two whole numbers (e.g. x.5) returns the ceiling()

value (whole number closest to positive infinity)
- the data type of the return value is the base data type of the argument

- one of xs:float , xs:double , xs:decimal or xs:integer

round-half-to-even(number) and round-half-to-even(number, precision)

- returns the number with the closest digit at the specified level of precision
- an argument equidistant to two whole numbers (e.g. x.5) returns the closest even whole

number
- when precision is supplied, it is the closes whole number to the power of 10 of precision

where positive precision is to the right of the decimal point, and negative precision is to
the left of the decimal point

- e.g. round-half-to-even(123456.789, -3) returns 123000.
- e.g. round-half-to-even(123456.789, 2) returns 123456.79
- e.g. round-half-to-even(123456.785, 2) returns 123456.78
- e.g. round-half-to-even(123456.794, 2) returns 123456.79
- e.g. round-half-to-even(123456.795, 2) returns 123456.8

- when used in rounding many numbers this approach leads to a more balanced distribution
rather than always rounding .5 up to the next number

- approximately half the time it will round .5 down to the previous number
- the data type of the return value is the base data type of the argument

- one of xs:float , xs:double , xs:decimal or xs:integer

Page 285 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

XML allows user constraints on the logical hierarchy (the vocabulary)
- defines the concept of validity with a syntax for a meta-markup language
- Document Type Definition (DTD) describes the document model as a structural schema

- the vocabulary defines the logical hierarchy of the information constructs explicitly
according to user-specified constraints

- other structural and content schema languages exist for XML
- validation constraints extend to values found within text and attribute content
- different approaches to describing models provide different benefits

- constrains during generation and confirms during processing
- does not convey semantics of information being marked up

01 <?xml version="1.0"?>
02 <!DOCTYPE purchase [
03 <!ELEMENT purchase (customer, product+)>
04 <!ELEMENT customer EMPTY>
05 <!ATTLIST customer db CDATA #REQUIRED>
06 <!ELEMENT product (amount)>
07 <!ATTLIST product db CDATA #REQUIRED>
08 <!ELEMENT amount (#PCDATA)>
09 <!ATTLIST amount currency (GBP | CAD | USD) "USD">]>
10 <purchase>
11 <customer db="cust123"/>
12 <product db="prod345">
13 <amount>23.45</amount>
14 </product>
15 </purchase>

The DTD can supplement the data model with additional information:

purchase

customer
 product

amount

(XML instance)

currency

db
db

(text)

- note how the shape of the tree is different in the presence of defaulted attribute
declarations

- the currency attribute is included in the tree when the DTD is present
- without the DTD the logical tree for the sample instance does not include the

currency attribute
- the markup used is identical in both the example instances

Page 11 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using number functions (cont.)
Chapter 7 - Data type expressions and functions
Section 2 - Number expressions

Note that when dealing with floating point, sometimes results are not precise; consider the
following empirical evidence from round.xsl :
<xsl:value-of select="format-number(round($use-fee*1.15*100),
 '#0.00')"/>

- a $use-fee value of 8.50 displays with taxes as "9.77"
- the value displayed should be "9.78" because 8.5 * 1.15 * 100 = 977.5 and the round()

function rounds a fraction of ".5" towards positive infinity
- the floating point library calculated 8.5 * 1.15 * 100 = 977.4999999 which, when rounded

to the closest whole number, rounds to 977

Page 286 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

The equivalent set of document constraints on the logical hierarchy expressed using W3C
Schema could be in purc.xsd :
01 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
02 <xsd:element name="purchase">
03 <xsd:complexType>
04 <xsd:sequence>
05 <xsd:element name="customer">
06 <xsd:complexType>
07 <xsd:attribute name="db" use="required"/>
08 </xsd:complexType>
09 </xsd:element>
10 <xsd:element name="product" maxOccurs="unbounded">
11 <xsd:complexType>
12 <xsd:sequence>
13 <xsd:element name="amount">
14 <xsd:complexType mixed="true">
15 <xsd:attribute name="currency" default="USD">
16 <xsd:simpleType>
17 <xsd:restriction base="xsd:string">
18 <xsd:enumeration value="GBP"/>
19 <xsd:enumeration value="CAD"/>
20 <xsd:enumeration value="USD"/>
21 </xsd:restriction>
22 </xsd:simpleType>
23 </xsd:attribute>
24 </xsd:complexType>
25 </xsd:element>
26 </xsd:sequence>
27 <xsd:attribute name="db" use="required"/>
28 </xsd:complexType>
29 </xsd:element>
30 </xsd:sequence>
31 </xsd:complexType>
32 </xsd:element>
33 </xsd:schema>

Page 12 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using string functions
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

String functions:
- strings are sequences of Unicode (a.k.a. Universal Character Set (UCS)) characters

- lexical space and comparison space are the same (not considering markup)
- e.g. the value of select="'abc<def'" is "abc<def "

- separate code points distinguish fully-formed from composite characters
- composite characters create visual combinations by using non-spacing diacritic

marks
- e.g. the sequence U+0065 U+0301 ("e´ ") is different than but appears visually the

same as U+00E9 ("é")
- a sequential pair of either string delimiter represents a single character

- e.g. the value of select='"abc""def'ghi"' is "abc"def'ghi "
- e.g. the value of select="'rst''uvw"xyz'" is "rst'uvw"xyz "
- e.g. the value of select="'abc""def'" is "abc""def "

- only the string delimiter reduces when doubled, not the attribute delimiter
- e.g. the expression select="'abc'def'" is in error

- the single apostrophe prematurely ends the string definition
- note that the attribute specification has its delimiters and the value inside the attribute

is a string with its own delimiters
- XML rules do not allow an attribute specification's delimiters to be used inside the

specified attribute's value without being escaped
- effective Boolean value of an empty string is false , all other strings test true

string(optional-expression)

- converts the argument to a string
- for any function expecting a string argument, that argument is converted to a string

through the use of this function
- specifying an empty node set as an argument returns the empty string
- specifying a non-empty node set as an argument returns the conversion of the first

member of the node set (in document order)
- specifying a non-empty node set of more than one member is a runtime error
- specifying a number argument converts the number to sequence of characters

- note that the result of performing arithmetic very rarely results in expected
decimal-place rounding

- adding two currency amounts with only two digits of significance could produce
a floating point number with 20 digits of decimal significance

- specifying a result-tree fragment returns a concatenation of all text nodes in the fragment
- not specifying an argument converts the current node to a string
- specifying a boolean argument converts true to the string "true " and false to the string

"false "

Page 287 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

The hint that a particular W3C Schema applies to a document is given via reserved attributes
- a processor is not obliged to use the hints

01 <?xml version="1.0"?>
02 <purchase xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 xsi:noNamespaceSchemaLocation="purc.xsd">
04 <customer db="cust123"/>
05 <product db="prod345">
06 <amount>23.45</amount>
07 </product>
08 </purchase>

Page 13 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using string functions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

normalize-unicode(string) and normalize-unicode(string, string)

- returns a string of the supplied string according to either the "NFC" method or the supplied
normalization method

- e.g. NFC on U+0065 U+0301 ("e´ ") creates U+00E9 ("é")
- canonical decomposition followed by canonical composition

- other values can also be specified for the second argument:
- e.g. NFD on U+00E9 ("é") creates U+0065 U+0301 ("e´ ")

- canonical decomposition
- e.g. NFKD on U+2122 ("™") creates U+0054 U+004D ("TM")

- compatibility decomposition
- e.g. NFKC on U+1EA3 (LATIN SMALL LETTER A WITH HOOK ABOVE) creates

same U+1EA3 going through U+0061 U+0309
- e.g. NFKC on U+1E9B (LATIN SMALL LETTER LONG S WITH DOT ABOVE)

creates different U+1E61 (LATIN SMALL LETTER S WITH DOT ABOVE) going
through U+0073 U+0307

- compatibility decomposition followed by canonical composition
- the prefix "NF" represents "Normalization Form"
- a possible application of this function could be in indexing where unrecognized characters

do not participate in the sort
- recognized characters from decomposing the original characters would participate

in the sort

Page 288 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

DTD declarations affecting the information set of the instance are significant to transform
processing that is focused on the implicit logical model of the instance:

- some attribute declarations in DTD are significant
- attribute list declarations impact transform processing by modifying the information

set of the instance
- supply of defaulted attribute values for attributes not specified in start tags

and empty tags of elements
- declaration of ID -typed attributes (for ID /IDREF processing) that confer

element identification uniqueness in an instance
- declaration of attribute types affecting the attribute value normalization during

XML processing
- attribute information does not affect the well-formed nature of an XML

instance
- all DTD content model declarations are not significant

- what the logical model could contain does not affect what the actual logical model
does contain

W3C Schema declarations inform the construction of the data model for the XML instance
from the Post Schema Validation Infoset

- only when a schema-aware processor is being used and when validation is engaged for
the source files

- schema type assignment, default attribute and element value provision, white space
normalization of element content

- the user-supplied lexical form of elements and attributes with atomic schema types
may be lost

- when not validated, input information items are treated per the XML information set
- considered as having unknown data types

- DTD default attribute value declarations override W3C Schema defaults

 No respect of element content white space is implied by the content models
- a content model is defined as either element content (a content model without #PCDATA)

or mixed content (a content model with #PCDATA)
- the term "element content white space" is defined in

http://www.w3.org/TR/xml-infoset
- sometimes colloquially termed elsewhere as "ignorable white space"

- all white space is significant to most XSLT 1 processors
- some recognition of white space can be influenced by the XSLT stylesheet

White space text node disposition is at user request
- strip all, preserve all, strip ignorable

Page 14 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using string functions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

 Introduction of "collations" used to specify different kinds of comparisons of strings that
might be supported by a processor

- e.g. a collation where "ß" (German sharp-s) is ordered between the letters "s" and "t "
- any language will do, including English

- use xsl:default-collation=" uri" to specify collation
- when not specified, the processor supports the Unicode Codepoint Collation

http://www.w3.org/2005/xpath-functions/collation/codepoint

 Collation URI strings are implementation defined
- the Saxon processor recognizes a URI string with the following syntax:

- ref:
http://www.saxonica.com/documentation/extensibility/collation.html

- e.g.: http://saxon.sf.net/collation?name=value;name=value
- lang= any value allowed by xml:lang=

- e.g. http://saxon.sf.net/collation?lang=fr
- collate according to the French language conventions

- strength varies by language by typified by three kinds of differences:
- strength=primary implies A=a

- case insensitive, accent insensitive
- strength=secondary implies A!=a and a=â

- case sensitive, accent insensitive
- strength=tertiary implies a!=â

- case sensitive, accent sensitive
- alphanumeric partitioning grouping sequences of ASCII digits
- alphanumeric=yes (e.g. where "A234" is greater than "A34")
- Saxon also supports pointing to arbitrary Java classes with custom code

- MarkLogic URI specifications through pseudo subdirectories:
- http://marklogic.com/collation/ locale[/ attribute]*
- see the search developer's guide:

http://developer.marklogic.com/pubs/4.1/books/search-dev-guide.pdf
- "Encodings and Collations" chapter

default-collation()

- returns the default collation currently in play
- when not specified the Unicode code point collation is used

- http://www.w3.org/2005/xpath-functions/collation/codepoint

Page 289 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Markup Language (XML) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

XML Recommendation describes behavior
- required of an XML processor
- how it must process an XML stream and identify constituent data
- the information it must provide to an application
- note that programming interfaces that have been standardized are separate initiatives and

are not defined by the XML Recommendation
- tree-oriented paradigm using DOM (Document Object Model)
- stream-oriented paradigm using SAX (Simple API for XML)

An XML document is only a labeled hierarchy of information
- XML only unambiguously identifies constituent parts of a stream of hierarchical

information
- no inherent meanings or semantics of any kind associated with element types

No rendition or transformation concepts or constructs
- information representation only, not information presentation or processing
- no defined controls for implying rendering semantics
- the xml:space attribute signals whether white space in content is significant to the data

definition

Page 15 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using string functions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

compare(first, second) or compare(first, second, collation)

- returns integer -1 , 0 or 1 based on the first argument being less than, equal to, or greater
than the second argument when using the optional third argument indicating a collation

codepoint-equal(first, second)

- returns boolean true or false if the first argument is equal to the second argument
when using the Unicode code point collation

- the code points are the character references in the Unicode specification
- http://www.unicode.org/unicode/standard/versions/

codepoints-to-string(integer-sequence)

- returns a string from a sequence of integer Unicode code points
- e.g. codepoints-to-string(65) returns "A"
- e.g. codepoints-to-string((65, 66, 67)) returns "ABC"

- note that codepoints-to-string(65, 66, 67) is in error because that
expresses three arguments, not one

- the resulting string is not allowed to contain non-XML 1.0 characters (e.g. control
characters from decimal 00 through 31 are disallowed, allowing 9, 10 and 13 for tab,
linefeed and carriage return)

string-to-codepoints(string)

- returns a sequence of integer Unicode code points from a string
- e.g. string-to-codepoints('abc') returns (97, 98, 99)

concat(string, string, optional-strings)

- returns the concatenation of each of the arguments' string value
- requires at least two arguments to be passed to the function
- concat('abc','def') returns "abcdef "

 string-join(string-sequence, string)

- returns the concatenation of the strings in the sequence of the first argument, separated
by the string in the second argument

- the separator string can be any empty or non-empty string and is not restricted to a single
character

- string-join(('abc','def'), '') returns "abcdef "
- string-join(('abc','def'), ', ') returns "abc, def "
- string-join(('abc','def',''), '
') separates all strings with a newline

- useful for text output
- when the last line needs to end with a newline, add an empty string to the end of

the sequence being joined

Page 290 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XML information links
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Links to useful information
- http://www.xml.com/axml/axml.html - annotated version of XML 1.0
- http://xml.coverpages.org/xml.html - Robin Cover's famous resource collection
- http://xml.coverpages.org/xll.html - Extensible Linking Language
- http://xml.silmaril.ie/ - Peter Flynn FAQ
- http://www.xmlbooks.com/ - a summary of available printed books
- http://www.CraneSoftwrights.com/links/trn-20110211.htm - training material
- http://www.CraneSoftwrights.com/resources - free resources
- http://XMLGuild.info - consulting and training expertise
- http://wiki.eclipse.org/PsychoPathXPathProcessor - standalone XPath 2.0

processor
- http://xml.coverpages.org/elementsAndAttrs.html - a summary of opinions
- http://google-styleguide.googlecode.com/svn/trunk/xmlstyle.html - a

corporate perspective

Related initiatives and specifications
- http://www.w3.org/TR/2004/REC-xml-infoset-20040204 - XML Information Set
- http://www.w3.org/TR/xmlschema-0/ - W3C XML Schema
- http://www.relax-ng.org - ISO/IEC 19757-2 RELAX NG (based on RELAX and

TREX)
- http://www.schematron.com - ISO/IEC 19757-3 Schematron
- http://www.nvdl.org - ISO/IEC 19757-4 Namespace-based Validation Dispatching

Language (NVDL)
- http://www.w3.org/TR/DOM-Level-2/ - Document Object Model Level 2
- http://www.saxproject.org - Simple API for XML

Page 16 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using string functions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

normalize-space(optional-expression)

- will act on the value of the current node (if no argument is supplied) or on the argument
(if one is supplied)

- strips leading and trailing white space characters and replaces contiguous sequences of
adjacent white space characters with a single space character

- this mimics the same normalization that XML processors do with tokenized attribute
values

- e.g. normalize-space(' abc def ghi ') returns "abc def ghi"
- handy for checking a node's value having only white space characters

- e.g. consider that a person entering information may think the following is "empty":
<name>
</name>

- the conditional test="name=''" is false
- the string value of the node is not empty because it has a linefeed

- the conditional test="normalize-space(name)=''" is true

Page 291 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XML Path Language (XPath)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Representing structured information
- http://www.w3.org/TR/xpath
- http://www.w3.org/TR/xpath20
- a data model for representing the information found in an XML document as an abstract

node tree
- the original markup syntax is not preserved
- the user constraints on the document model (e.g. DTD content models) are not

germane
- any logical or physical modularization (the use of entities) is not preserved

- a mechanism for addressing information found in the document node tree
- the address specifies how to traversal the data model of the instance

- a core upon which extended functionality specific to each of XPointer, XSLT and XQuery
is added

- an expression of Boolean, numeric, string and node values as different data types
- a set of functions working on the values

- annotated with W3C Schema data type information when available
- data model defined for use with XSLT and XQuery:

- http://www.w3.org/TR/xpath-datamodel/

Addressing and finding structured information
- common semantics and syntax for addressing a logical hierarchy

- document order, a.k.a. parse order, a.k.a. depth first order
- no representation of the physical hierarchy of an XML document
- a compact non-XML syntax

- for use in languages needing to address information found in an XML document
- id('start')//question[@answer='y']

- address all question elements whose answer attribute is "y" that are
descendants of the element in the current document whose unique identifier
is "start "

- the result is an address of element nodes
- for $each in id('start')//question[@answer='y']

 return if ($each/@weight) then $each/@weight * 100.
 else 100.

- for all question elements whose answer attribute is "y" that are descendants
of the element in the current document whose unique identifier is "start ",
return a sequence of numbers where, if that element has a weight attribute
return the weight multiplied by 100, otherwise just return 100

- the result is a sequence of numbers suitable for processing, such as an
argument to the avg() function

Page 17 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using string functions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

contains(first, second) and starts-with(first, second)

- returns boolean true or false if the first argument wholly contains and begins with the
complete second argument

ends-with(first, second)

- returns boolean true or false if the first argument wholly contains and ends with the
complete second argument

string-length(optional-argument)

- returns the count of characters in the supplied string or, if not supplied, in the value of
the current node

- "déjà vu": string-length('déjà vu') returns 7
- "déjà vu": string-length('de´ja` vu') returns 9

substring(first-as-string, second-as-number, optional-third-as-number)

- returns the sequence of characters of the first argument from the numeric position
indicated in the second argument (1-origin position) to either the end of the string or the
count of characters indicated by the number in the third argument (whichever is less)

- substring('abcdef', 4, 2) returns "de"
- substring('abcdef', 4) returns "def"

substring-before(first, second) and substring-after(first, second)

- returns the empty string if the first argument doesn't wholly contain the second argument,
or the portion of the first argument that occurs before or after the complete second
argument

- substring-before('abc def ghi', ' ') returns "abc"
- substring-after('abc def ghi', ' ') returns "def ghi"

Page 292 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XML Path Language (XPath) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

 XPath 1.0 is an addressing language and is not a query language
- only based on XML 1.0 and Namespaces in XML 1.0

- expressed in terms of the XML Information Set
- http://www.w3.org/TR/xml-infoset

- only addresses information that needs to be found in an XML document
- other aspects of querying involve working with the information that is addressed before

returning a result to the requestor
- instructions in XSLT perform query functionality

- XPath is used only to address components of an XML instance, and in and of itself does
not provide any traditional query capabilities (though hopefully would be considered as
the addressing scheme by those defining such capabilities)

 XPath 2.0 is very much a query language
- based on W3C Schema XSD 1.0 perspective of an XML document
- supports conditional expressions, actions on the result set, etc.
- very powerful and expressive language for manipulating all types of information before

returning the result of manipulation for action

Page 18 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using string functions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

upper-case(string) and lower-case(string)

- returns the upper- or lower-case translation of the string argument
- follows the appropriate case mappings of the Unicode specification

- http://unicode.org/Public/UNIDATA/UCD.html
- does not follow any particular cultural expectation

- e.g. upper case "é" is either "E" in France or "É" in Québec
- the Unicode character database indicates it is "É"

translate(first, second, third)

- returns the characters of the first argument translated by replacing those characters listed
in the second argument with the corresponding characters in the same ordinal position
found in the third argument

- characters in the second argument positioned beyond the length of the third argument
are removed from the first argument

- translate("abcDEFabcDEF", "cDaE", "CdA") returns "AbCdFAbCdF"
- translate("$1,234.56", "$,", "") returns "1234.56 "

- suitable for numeric comparisons
- translate("1 234,56€", ",€ ", ".") returns "1234.56 "

- suitable for numeric comparisons
- translate($value,translate($value,'0123456789',''),'')

- returns the digits found in the string value of the context item
- the inner translate() creates a string of every character except digits
- the outer translate() removes those characters thereby leaving only the original

digits
- <!DOCTYPE xsl:stylesheet [

<!ENTITY lower 'abcdefghijklmnopqrstuvwxyz'>
<!ENTITY upper 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'>
]>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
...
 translate($value,'&lower;','&upper;')

- the example converts the $value string to upper case
- suitable for case-less comparisons and presentations

- also could use variables with the case strings instead of entities
- <xsl:variable name="lower" select="'abcdefghijklmnopqrstuvwxyz'"/>

<xsl:variable name="upper" select="'ABCDEFGHIJKLMNOPQRSTUVWXYZ'"/>
...
translate($value,$lower,$upper)

Page 293 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Styling structured information
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Styling is transforming and formatting information
- the application of two processes to information to create a rendered result
- the ordering of information for creation isn't necessarily (or shouldn't be constrained to)

the ordering of information for presentation or other downstream processes
- it is a common (though misdirected) first step for people working with these

technologies to focus on presentation
- the ordering should be based on business rules and inherent information properties,

not on artificial presentation requirements
- downstream arrangements can be derived from constraints imposed upstream in

the process
- information created richly upstream can be manipulated into less-richly distinguished

information downstream, but not easily the other way around
- exception when the business rules are presentation or appearance oriented (e.g.

book publishing)
- the need to present information in more than one arrangement requires transformation
- the need to present information in more than one appearance requires formatting

W3C XSL Working Group
- chartered to define a style specification language that covers at least the formatting

functionality of both CSS and DSSSL
- not intended to replace CSS, but to provide functionality beyond that defined by CSS

- e.g. add element reordering and pagination semantics

Two W3C Recommendations
- designed to work together to fulfill these two objectives
- XSL Transformations (XSLT) - versions 1.0 and 2.0

- transforming information obtained from a source into a particular reorganization
of that information to be used as a result

- Extensible Stylesheet Language (XSL/XSL-FO) - versions 1.0 and 1.1
- specifying and interpreting formatting semantics for the rendering of paginated

information
- the acronym XSL-FO is unofficial but in wide use, including at the W3C, for just

the formatting objects, properties and property values
- XSL normatively includes XSLT by reference in chapter 2

- XSLT has specific features designed to be used with XSL-FO

XSLT and XSL-FO are endorsed by members of WSSSL
- an association of researchers and developers passionate about markup technologies

Page 19 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Decimal formatting in XSLT
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

format-number(first-as-number, second-as-string, optional-third-as-string)

- returns the number represented in the first argument as a string formatted according to
the string in the second argument following the decimal format named by the third
argument (or the unnamed decimal format if there is no argument)

- the second argument is a string of characters made up of symbols in one or two patterns
that dictate how the digits of the positive or negative values of the number are presented
in the resulting string

- format-number(.2, ".00") returns ".20 "
- format-number(.2, "0.00") returns "0.20 "

- the zero-digit indication displays digit even when not significant
- numbers are rounded to the nearest last zero digit after the decimal separator

- format-number(.204, ".00") returns ".20 "
- format-number(.205, ".00") returns ".21 "

- format-number(.9876, "0.0%") returns "98.8% "
- percent triggers automatic multiplication by 100 and display of suffix

- format-number(.9876, "0.0‰") returns "987.6‰"
- per-mille triggers automatic multiplication by 1000 and display of suffix

- format-number(-12345, "#,###;(#)") returns "(12,345) " not "(12345) "
- the semi-colon separates the positive value pattern from the negative
- only the prefix and suffix of the negative pattern are respected, the whole and

fraction parts are ignored
- format-number(1234.56, "# ###,00€", 'myeuro') returns "1 234,56 €"

- uses cultural practices described in a declared decimal format named 'myeuro '
- the format string syntax is the same as that used in Java and is described in more detail

in the next section regarding Decimal Formatting
- format-number() is specific to XSLT and is not part of XPath

Page 294 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language (XSL/XSL-FO)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/2001/REC-xsl-20011015/
- http://www.w3.org/TR/xsl11 (http://www.w3.org/TR/xsl)

Paginated flow and formatting semantics vocabulary
- capturing agreed-upon formatting semantics for rendering information in a paginated

form on different types of media
- XSLT is normatively referenced as an integral component of XSL as a language to

transform an instance of an arbitrary vocabulary into the XSL-FO XML vocabulary
- XSL-FO can be regarded simply as a "pagination markup language"
- flow semantics from the DSSSL heritage

- e.g. headers, footers, page numbers, page number citations, columns, etc.
- formatting semantics from the CSS heritage

- e.g. visual properties (font, color, etc.) and aural properties (speak, volume, etc.)

Target of transformation
- the stylesheet writer transforms a source document into a hierarchy that uses only the

formatting vocabulary in the result tree
- stylesheet is responsible for constructing the result tree that expresses the desired rendering

of the information found in the source tree
- the XML document gets transformed into its appearance

- stylesheet cannot use any user constructs as they would not be recognized by an XSL
rendering processor

- for example, the rendering engine doesn't know what an invoice number or customer
number is that may be represented in the source XML

- the rendering engine does know what a block of text is and what properties of the
block can be manipulated for appearance's sake

- the stylesheet transforms the invoice number and customer number into two blocks
of text with specified spacing, font metrics, and area geometry

Device-independent formatting constructs
- the XSL-FO vocabulary describes two media interpretations for objects and properties:

- visual media
- aural media
- a further distinction is also made at times for interactive media

- the results of applying a single stylesheet can be rendered on different types of rendering
devices, e.g.: print, display, audio, etc.

- may still be appropriate to have separate stylesheets for dissimilar media
- device independence allows the information to be rendered on different media, but

a given rendering may not be conducive to consumption

Page 20 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Decimal formatting in XSLT (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

format-number() third argument:
- name of a declaration of cultural influences on the formatting of numbers
- omitted to specify the default or unnamed decimal format

<xsl:decimal-format attributes/>

- top-level instruction describing grammar components and formatting strings
- name="description-qname"

- cannot be more than one unnamed specification
- cannot be more than one named specification with the same name
- exception accommodating external stylesheet fragments:

- two format declarations with the same name (or unnamed) must have identical
effective values

- pattern-separator= between positive and negative formats ('; ')
- digit= for insignificant digits ('#')
- zero-digit= for significant digits ('0')
- decimal-separator= between whole and fraction ('. ')
- grouping-separator= between number groups (', ')
- percent= for calculation and display ('%')
- per-mille= for calculation and display ('‰ ')
- minus-sign= for presentation of negative numbers ('- ')
- infinity= for presentation of infinity values ("Infinity ")
- NaN= for presentation of invalid numbers ("NaN")

Example:
01 <xsl:decimal-format name="myeuro" NaN="(invalid)"
02 decimal-separator="," grouping-separator=" "/>

 java.text.DecimalFormatSymbols.html

- each get/set method pair in the documentation is an attribute defined for the
<xsl:decimal-format> element

- the currency symbol (0x00a4) cannot be used in a format pattern for portability reasons
because this was added after the initial release of JDK 1.1

- the quote character is not localized

The formal specification of the format string syntax is that used for Java:
http://java.sun.com/products/jdk/1.1/docs/api/java.text.DecimalFormat.html

The formal specification of the format string syntax is in the XSLT 2.0 specification
- http://www.w3.org/TR/xslt20/#processing-picture-string

Page 295 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language Transformations
(XSLT)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Addressing, querying and publishing structured information
- http://www.w3.org/TR/xslt

- addressing structured information
- http://www.w3.org/TR/xslt20

- querying structured information
- a framework for complex and intelligent querying of structured content

- with a powerful syntax for modular and extensible stylesheet writing
- works on XML documents
- works on any source of information projected as if it were an XML document

- such projection is defined by the vendor, not by the specification
- the specification sees all information as if it had been in an XML document
- e.g. database tables, rows and columns
- e.g. unstructured documents
- e.g. proprietary binary formats
- any information can be fit (or shoehorned) into an XML document by using data

projection
- numerous features for publishing information for human consumption

- e.g. formatting numbers, dates and times
- e.g. polymorphism of stylesheet constructs for specialization of behaviors
- e.g. elaborate grouping criteria
- e.g. multiple result trees

Shares the same data model as XQuery
- built on XPath 2.0 with additional functions not available in XQuery expressions

Shares the same basic processing model as XQuery
- some XSLT and XQuery implementations share the same core engine

- e.g. Saxon 9 http://saxon.sf.net treats XSLT and XQuery merely as different
syntax skins over the same implementation engine

Shares the same serialization specification as XQuery
- used to frame query results as structured or non-structured output of transformation

Syntactically, XSLT is an XML vocabulary
- an XSLT stylesheet is a well-formed XML document
- all use of XPath 2.0 is in attributes of XSLT and other XML elements

Transformation specifications are termed "XSLT stylesheets"
- describing how new results are constructed from old inputs
- termed generically as "a transform" in this training material

Page 21 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Decimal formatting in XSLT (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

format-number() second argument:
- a user-specified sequence of formatting characters interpreted by the processor when

formatting the numeric value of the first argument to the function
- one or two format sub-sequences

- the first sub-sequence for positive value and the optional second for negative
{p-prefix}p-whole{p-fraction}{p-suffix}
{pat-sep{n-prefix}n-whole-ignored{n-fraction-ignored}{n-suffix}}

- each sequence is made of up to four components (braces indicate optional
components):

- a prefix that is output verbatim
- provided there are no digit or zero-digit characters

- the whole number component
- comprised of optional excess digit indicators, followed by leading

zero-digit indicators, interspersed with grouping separators, optionally
followed by a decimal separator

- ignored for negative numbers
- sufficient to utilize as a minimum either a single digit indicator or

just the decimal separator, but not nothing
- whole number component for positive number is utilized for both

- a fraction number component
- comprised of trailing zero-digit indicators that force trailing zeroes,

followed by optional excess digit indicators where trailing zero-digits
are suppressed

- ignored for negative numbers
- fraction number component for positive number is utilized for both

- a suffix that is output verbatim and checked for a percent or per-mille
indication

- provided there are no digit or zero-digit characters
- separated by the pattern separator character when both are specified

- the negative number pattern is not required if the prefix and the suffix for the
negative number are formatted the same as for the positive number

- characters not defined by the grammar are simply copied

Page 296 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language Transformations
(XSLT) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Transformation using construction by example
- a vocabulary for specifying templates of the result that are filled-in with information

from the source
- the stylesheet includes examples of each of the components of the result
- the stylesheet writer declares how the XSLT processor builds the result from the

supplied examples
- the primary memory management and manipulation (node traversal and node creation)

is handled by the XSLT processor using declarative constructs, in contrast to a
transformation programming language or interface (e.g. the DOM - Document Object
Model) where the programmer is responsible for handling low-level manipulation using
imperative constructs

- includes constructs to reposition over structures and information found in the source
- the information being transformed can be traversed in different ways any number of

times required to construct the desired result
- straightforward problems are solved in straightforward ways without needing to know

programming
- useful, commonly-required facilities are implemented by the processor and can be

triggered by the stylesheet
- the language is Turing complete, thus arbitrarily complex algorithms can be

implemented (though not necessarily in a pretty fashion)
- includes constructs to manage stylesheets by sharing components in different fragments
- XSLT 2.0 has many more programming features and function calls than XSLT 1.0

Many language features for modularization and leveraging stylesheets
- supports forms of polymorphism for stylesheet constructs
- supports extensive re-use of stylesheet fragments for generalized transformations or

specific transformations
- overriding template rules

- allows one to create "onion skins" of modifications to stylesheet libraries
- testing the presence of extensions before using them

- allows one to run one stylesheet with multiple XSLT processors

Page 22 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Decimal formatting in XSLT (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

The following lines are extracted from dformat.xsl to illustrate examples of using format
patterns:
01 <xsl:text>1 + '$###,####,##.###0;(########.000#)' </xsl:text>
02 <xsl:value-of select="format-number(123456789.9876,
03 '$###,####,##.###0;(########.000#)')"/>
04 <xsl:text>&nl;2 - '$######,###.###;($######,##.####)' </xsl:text>
05 <xsl:value-of select="format-number(-123456789.9876,
06 '$######,###.###;($######,##.####)')"/>
07 <xsl:text>&nl;3 + '+#########.##;(##,##,##,##.000#)' </xsl:text>
08 <xsl:value-of select="format-number(123456789.9876,
09 '+#########.##;(##,##,##,##.000#)')"/>
10 <xsl:text>&nl;4 - '$######,###0.#;$-#' </xsl:text>
11 <xsl:value-of select="format-number(-123456789.9876,
12 '$######,###0.#;$-#')"/>
13 <xsl:text>&nl;5 + '$######,#00.####' </xsl:text>
14 <xsl:value-of select="format-number(123456789.9876,
15 '$######,#00.####')"/>
16 <xsl:text>&nl;6 - '$#######,##0.000#;(-$#)' </xsl:text>
17 <xsl:value-of select="format-number(-123456789.9876,
18 '$#######,##0.000#;(-$#)')"/>
19 <xsl:text>&nl;7 + '###,###.###%;(#)' </xsl:text>
20 <xsl:value-of select="format-number(123456789.9876,
21 '###,###.###%;(#)')"/>
22 <xsl:text>&nl;8 - '###,###.###%;(#)' </xsl:text>
23 <xsl:value-of select="format-number(-123456789.9876,
24 '###,###.###%;(#)')"/>
25 <xsl:text>&nl;9 + '#######,###.###%' </xsl:text>
26 <xsl:value-of select="format-number(123456789.9876,
27 '#######,###.###%')"/>
28 <xsl:text>&nl;10 - '#######,###.###%' </xsl:text>
29 <xsl:value-of select="format-number(-123456789.9876,
30 '#######,###.###%')"/>

Page 297 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible Stylesheet Language Transformations
(XSLT) (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Illustration of templates triggered in source-tree order constructing a result:

A

B

G
 I

E
D

C

F

H
 K

M

L

J

N

P
 Q

W
 Y
X

Z
T
 U

V

S
R

O

early result tree
source tree
 XSLT

stylesheet

Source

Node type:

Result

Template

1

2

2
 3

3
3
 4

3
 6

5

3
 6

3
 2
3

3
 2

3

6:

J
5:

F
4:

3:

2:

A
1:

A

B
 E
D

C

F

A

B

G
 I

E
D

C

F

H
 K

M

L

J

N

P
 Q

S
R

O

final result tree

Legend:

 - source tree is labeled by type

 - result tree (in three

 snapshots) is labeled by

 result parse order

Of note:
- the source tree contains nodes of six different types, labeled "1" through "6"

- a number of nodes are found multiple times in the source tree
- the stylesheet contains fragmented examples of the result tree

- each example template is associated with a node in the source tree
- the nodes in the source tree trigger the building of the result from the example templates

- some examples are used multiple times in the result
- in this example, the source tree is visited strictly in parse order to generate the result tree

- the stylesheet can visit the source tree in whatever order is required to trigger the
assembly of the result tree in result parse order

- result parse order is indicated by the letters "A" through "Z"

Page 23 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Decimal formatting in XSLT (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

The following lines are produced when running the stylesheet dformat.xsl :
01 1 + '$###,####,##.###0;(########.000#)' $1,23,45,67,89.9876
02 2 - '$######,###.###;($######,##.####)' ($123,456,789.988)
03 3 + '+#########.##;(##,##,##,##.000#)' +123456789.99
04 4 - '$######,###0.#;$-#' $-1,2345,6790
05 5 + '$######,#00.####' $123,456,789.9876
06 6 - '$#######,##0.000#;(-$#)' (-$123,456,789.9876)
07 7 + '###,###.###%;(#)' 12,345,678,998.76%
08 8 - '###,###.###%;(#)' (12,345,678,998.76)
09 9 + '#######,###.###%' 12,345,678,998.76%
10 10 - '#######,###.###%' -12,345,678,998.76%

Note the following regarding each numbered line above when using a Java-based
implementation:

1 the number of digit indicators between the decimal separator and the closest grouping
separator dictate the groupings for the entire whole number component (other grouping
sizes are ignored)

2 the grouping indications in the negative value pattern are ignored; the whole number and
fraction component formatting is dictated by the positive value pattern even when the
value is negative

3 the second digit of the fraction component is the rounded value of the third digit ("8"
becomes "9" because of "7")

4 a single digit indicator suffices to delimit the prefix from the suffix in the negative value
pattern

5 any number of zero digits can lead the decimal separator
6 any number of zero digits can follow the decimal separator
7 the use of the percent indicator in the suffix triggers the value to be multiplied by 100

before being formatted
8 illustrating the problem with reliance on the incorrect Java-library, the use of the percent

indicator in the positive value triggers the multiplication for the negative value even
though the negative value doesn't include the percent indicator; the result should be
"-123456789.9876"

9 a complete specification can omit the pattern for negative values
10 a specification omitting the pattern for negative values defaults to the value being prefixed

by the minus sign

Page 298 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT properties
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Expression syntax is iconic
- using XML markup allows one to manifest the output

- XML is a first-class data type and output expression syntax
- the syntax itself is abstracted into a tree of nodes
- syntax not related to the information in the document is not preserved

- using other languages one must describe the creation of the output
- XML is created using function calls, not built into the language syntax

Abstract structure result of nodes, not markup
- external result markup (if needed) is determined from the result node tree
- the result of transformation is a tree of nodes built from instantiated templates as an

internal hierarchy that may be serialized externally as markup
- the processor may, but is not obliged to, externalize the result tree in XML or some other

type of syntax if requested by the transform writer
- the transform writer has little or no control over the syntactic constructs chosen by

the processor for serialization
- the transform writer can request certain behaviors that the processor can ignore
- final result is guaranteed to comply with lexical requirements of the output method

- when not coerced by certain transform controls
- source tree markup syntax preservation cannot be implemented with a transform

- because the source tree syntax is translated into source tree nodes and forgotten
- the processing model allows the processor to immediately serialize the result tree as

markup while it is being built by the transform, and not maintain the complete result in
memory

- the transform may request the processor emit the result tree using built-in available lexical
conventions (XML, HTML or text-only conventions)

- multiple result trees may be constructed and serialized

Not intended for syntactic general purpose XML transformations
- designed for downstream-processing and subsequent transformations or interpretation

- does not include certain features appropriate for syntax-level general purpose
transformations

- unsuitable for original markup syntax preservation requirements
- XSLT 2.0 has more syntax serialization features than XSLT 1.0
- includes facilities for working with the XSL vocabulary easily

- still powerful enough for most downstream-processing transformation needs
- where the syntax choices when using XML are not important
- absolutely general purpose when the output is going to be input to an XML processor

Page 24 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Decimal formatting in XSLT (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

The attributes of the named decimal format declared by an <xsl:decimal-format> instruction
specify the characters that control the interpretation of a format pattern and/or the formatting
of a numeric value:

- attributes only controlling the interpretation of characters in the grammar of a format
pattern (never in the result of formatting a number value) are as follows:

- pattern-separator= (e.g. "; ")
- digit= (e.g. "#")
- zero-digit= (e.g. "0")

- attributes both controlling the interpretation of characters in the grammar of a format
pattern and specifying the characters that may appear in the resulting string when the
function is formatting a number are as follows:

- decimal-separator= (e.g. ". " (default) or ", ")
- grouping-separator= (e.g. ", " (default) or a space)
- percent= (e.g. "%")
- per-mille= (e.g. Unicode character 0x2030)

- attributes only specifying the characters and strings that may appear in the result of
formatting a number value are as follows:

- minus-sign= (e.g. "- " (hyphen/minus, 0x2d))
- infinity= (e.g. Unicode character 0x221e; the default value is the string

"Infinity ")
- NaN= "Not-a-Number" (e.g. Unicode character 0xfffd; the default value is the string

"NaN")

Page 299 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT properties (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Document model and vocabulary independent
- a transform is independent of any Document Type Definition (DTD) or schema that may

have been used to constrain the instance being processed
- a processor can process well-formed XML documents without a model

- behavior is specified against the presence of markup in an instance as the implicit
model, not against the allowed markup prescribed by any explicit model

- one transform can process instances of different document models
- multiple instances of different models can be used in a single transformation
- different transforms can process a given single instance to produce different results

Source files and transforms
- one or more source files and one or more transform fragments

- starting with a single source file and the top-most transform fragment
- all stylesheets and source files must be well-formed XML
- stylesheets must be XML, source files may be simple text or well-formed XML

- zero or more source files and one or more stylesheet fragments
- starting with the top-most stylesheet fragment and optionally a source file

- the processor is allowed to deliver well-formed XML from any data source
- Recommendation does not support SGML instances as input

- see http://www.w3.org/TR/NOTE-sgml-xml-971215 for a comparison of SGML
and XML

- see http://tidy.sourceforge.net/ for interpretation and conversion of
instances of the HTML vocabulary into XHTML markup conventions

- see http://www.ccil.org/~cowan/XML/tagsoup for interpretation and
conversion of streams of arbitrary HTML constructs

- see http://www.jclark.com/sp/sx.htm in the SP package
http://www.jclark.com/sp for conversion of SGML instances to XML instances
without document type declarations

- see http://www.CraneSoftwrights.com/resources/n2x for conversion of
SGML instances to XML instances with document type declarations

Validation unnecessary (but convenient)
- an XSLT processor need not implement a validating XML processor
- must implement at least a non-validating XML processor to ensure well-formedness
- validation is convenient when debugging transform development

- if the source document does not validate to the model expected by the transform
writer, then a correctly functioning transform may exhibit incorrect behavior

- time spent debugging the working transform is wasted if the source is incorrect
- can selectively validate input documents and result documents using W3C Schema

Page 25 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Regular expressions
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

Regular expressions are very powerful "wild-card" patterns of letters and symbols
- used to detect the presence of actual characters found in strings
- used to parcel portions of a string in order to act on the parcels
- a regular expression describes a pattern of characters searched for and
- numerous online tutorials for the writing of regular expressions

Strings are comprised of "matching" (the regular expression) and "non-matching" substrings
- the regular expression defines the pattern of a matching substring

- substrings that do not match the regular expression are as long as possible
- there are never two consecutive matching substrings in sequence, nor two consecutive

non-matching substrings in sequence
- there are empty non-matching substrings between two matching substrings

- there is always a non-matching substring at the start and end of the set of substrings
- when the string begins with a matching substring there is an empty non-matching

substring between the start of the string and the first matching substring
- when the string begins with a matching substring there is an empty non-matching

substring between the start of the string and the first matching substring

non-matching substrings

target string

regex

matching substrings

non-matching substrings

target string

regex

matching substrings

Page 300 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT properties (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Multiple source files possible
- one mandatory primary source file
- one optional primary source file

- in the absence of a source file a named template must be specified as where to start
processing

- transform may access arbitrary other source files
- including itself as a source file
- names of resources hardwired within the transform
- names of resources found within source files

- multiple accesses to the same resource refer to a single abstract representation
- one is not built for each access to a named resource

- simple text files can be input into the process

Extensible language design supplements processing
- a processor may support extensions specified in the transform but is not obliged to do

so
- extended functions
- extended serialization conventions
- extended sorting schemes
- extended instructions

- access to non-standardized extensions is specified in standardized ways
- transform user-defined functions can be declared and used

Single-pass construction of the result node-tree
- unlike the Document Object Model (DOM)

- reified node-tree manipulation (read/write) interface with syntax serialization
- unlike the Simple API for XML (SAX)

- single-pass input event-handling interface with single-pass result markup syntax
- transform must construct the result tree in result-tree parse order in one pass

- no revisiting of the result tree after construction
- no revisiting an element's start tag after beginning that element's content
- recall the result tree building shown on page 23

- the source trees can be traversed in any order (not necessarily in parse order)
- information in the source trees can be ignored or selectively processed

- the result tree is emitted as if constructed chronologically in parse order
- this is not an implementation constraint, but an implementation must act as if the

tree were created in parse order
- an important distinction for parallelism where partial trees may be constructed

in parallel

Page 26 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Regular expressions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

Examples of matching against "pqrabbbcstu ":
1 "abc " doesn't match anywhere

- there are too many "b"s
2 "ab+c " matches "abbbc "

- the "+" allows one or more "b"s
3 "ab*c " matches "abbbc "

- the "* " allows zero or more "b"s
4 "ab+x*c " matches "abbbc "

- the "* " allows zero or more "x"s, and there are none
5 "^ab+c " doesn't match

- the "̂ " represents the start of the string
6 "r[bca]+s?x?t " matches "rabbbcst "

- the "[bca] " is a character class choice of "b", "c", or "a", and "s" may or may not
be there, and "x" may or may not be there

7 "[m-w]+ " matches "pqr " and "stu "
- this use of "- " in a character class is a range indication

Examples of matching against "a bcb aa bcb a ":
1 (..)aa.*\1 matches "b aa bcb "

- the parenthesis group any two characters in advance of two "a"s, followed by any
sequence up to the same two characters that were matched in the group

2 a.*a matches the entire string
- the longest possible string of any characters between two letters "a"

3 a.*?a matches "a bcb a " twice
- the shortest possible string of any characters between two letters "a"

4 \s+ matches four times
- sequences of white-space characters

5 \S+ matches five times
- sequences of non-white-space characters

Page 301 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Historical development of the XSL and XQuery
Recommendations
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Recommendation release history:
- first concept description floated in August 1997 with no official status within the World

Wide Web Consortium (W3C)
- http://www.w3.org/TR/NOTE-XSL.html

- the XSL Working Group officially chartered in early 1998
- http://www.w3.org/Style/XSL/

- agreed upon requirements for XSL by the Working Group:
- http://www.w3.org/TR/WD-XSLReq

- the XSL 1.0 Recommendation (XSL-FO) published October 15, 2001
- http://www.w3.org/TR/2001/REC-xsl-20011015/

- the XSL 1.1 Recommendation (XSL-FO) published December 5, 2006
- http://www.w3.org/TR/2006/REC-xsl11-20061205/

- the XSLT/XPath 1.0 Recommendations published November 16, 1999
- http://www.w3.org/TR/1999/REC-xslt-19991116

- http://www.w3.org/1999/11/REC-xslt-19991116-errata - errata
- http://www.w3.org/TR/1999/REC-xpath-19991116

- http://www.w3.org/1999/11/REC-xpath-19991116-errata - errata
- XSLT 1.1 (work abandoned)

- http://www.w3.org/TR/2000/WD-xslt11req-20000825 - requirements
- http://www.w3.org/TR/2001/WD-xslt11-20010824
- no incompatible changes to XSLT 1.0 in XSLT 1.1, only additional functionality
- too many interactions with plans for XSLT 2.0, so functionality to be folded into

XSLT 2.0 release
- XSLT 2.0/XPath 2.0/XQuery 1.0 originally published January 23, 2007, followed by

editorial editions:
- http://www.w3.org/TR/2007/REC-xslt20-20070123/
- http://www.w3.org/TR/2010/REC-xpath20-20101214/
- http://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/
- http://www.w3.org/TR/2010/REC-xpath-functions-20101214/
- http://www.w3.org/TR/2010/REC-xslt-xquery-serialization-20101214/
- http://www.w3.org/TR/2010/REC-xquery-20101214/
- http://www.w3.org/TR/2010/REC-xquery-semantics-20101214/
- http://www.w3.org/TR/2010/REC-xqueryx-20101214/

Page 27 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Regular expressions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

regex represents a subset of Perl and Unix regular expressions
- full specification in section 7.6.1 of "Functions and Operators"

- http://www.w3.org/TR/xpath-functions/#regex-syntax
- extends the specification of Annex F of W3C Schema data types

- http://www.w3.org/TR/xmlschema-2/#regexs
- the spec cites http://www.unicode.org/unicode/reports/tr18/ for Unicode

- http://unicode.org/Public/UNIDATA/Blocks.txt is useful
- whereas W3C Schema regex is anchored, XPath 2.0 regex is unanchored

 Some helpful regular expression patterns (not nearly a complete list):
- "\t ", "\r ", "\n ", match tab, return and newline
- ". " matches any character except \n and \r
- "^ " and "$" match the start and end of the string
- "(" and ") " wrap groups (numbered by order of "(" characters)
- "\ digit matches previously numbered wrapped group
- "regex| regex" matches one of two (or more) specified expressions
- quantifiers of longest matching expression (or shortest if a "?" follows):

- "regex?" matches zero or one atomic expressions
- "regex* " matches zero or more atomic expressions
- "regex+" matches one or more atomic expressions
- "regex{n} " matches n atomic expressions
- "regex{n,} " matches n or more atomic expressions
- "regex{n,m} " matches n through m atomic expressions

- "\s ", "\i ", "\c ", "\d ", "\w ", "\p " matches (respectively) one white-space, name-start,
name, digit, word and Unicode property character

- using upper case implies "not" of the characters
- "\ char" matches the pattern character instead of interpreting it
- "[chars] " matches class of any of the individual or range of characters listed

- a range is any "low- high" as in "a-z " or "A-Z "
- an exclusion is any "property-class- class" as in "[\c-[:]] "

- "[^ chars] " matches any of other than the individual or range of characters listed

flags impacts the interpretation of the regular expression
- s - includes \n in the ". " wild-card
- m - treats "̂ " and "$" on a per-line basis (according to \n)

- instead of on the basis of the entire string
- i - treats the characters without consideration of letter-case
- x - collapses any white-space characters in the pattern prior to interpretation

- does not remove white-space found in character classes (using "[" and "] ")
- allows breaks and indentation in the expression for legibility

Page 302 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSL information links
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Links to useful information
- http://xml.coverpages.org/xsl.html - Robin Cover
- http://www.mulberrytech.com/xsl/xsl-list/ - mail list
- http://www.dpawson.co.uk - an XSL/XSLT FAQ
- http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/index.html -

numerous example XSLT scripts and fragments
- http://www.openmath.org/cocoon/openmath/ - OpenMath project work by David

Carlisle
- http://www.CraneSoftwrights.com/links/trn-20110211.htm - comprehensive

XSLT/XPath and XSL-FO training material
- http://XMLGuild.info - consulting and training expertise
- http://www.CraneSoftwrights.com/resources - free XSLT and XSL-FO resources
- http://incrementaldevelopment.com/xsltrick/ - "Stupid XSLT Tricks"
- http://xml.coverpages.org/xslSoftware.html - list of tools
- http://www.exslt.org/ - community effort for XSLT extensions
- http://exslfo.sf.net - community effort for XSL-FO extensions
- http://foa.sourceforge.net/ - open source FO GUI authoring tool
- http://www.xslfast.com/ - commercial FO GUI authoring tool
- http://www.inventivedesigners.com/ - commercial FO GUI authoring tool
- http://www.abisource.com/ - word processing with "Save As..." for XSL-FO
- http://www.AntennaHouse.com/XSLsample/XSLsample.htm - paginating XHTML
- ISBN 1-56609-159-4 - "The Non-Designer's Design Book", Robin Williams, Peachpit

Press, Inc., 1994
- ISBN 0-8230-2121-1/0-8230-2122-X - "Graphic design for the electronic age; The

manual for traditional and desktop publishing", Jan V. White, Xerox Press, 1988 (out of
print but worthwhile to search for as a used book)

Page 28 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Regular expressions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

Recall the definitions of matching and non-matching substrings on page 300

matches(string, regex-match, optional-flags)

- returns boolean true if there exists any matching second argument regular expression
substring anywhere in the first argument string, or false if are there are none

tokenize(string, regex-match, optional-flags)

- returns the sequence of all non-matching substrings found in the first argument as defined
by the regular expression pattern second argument

- occurrences of the second argument are not included in the sequence
- the second argument cannot evaluate to the empty string

e.g. tokenize('a bcb aa bcb a','\s+') returns "('a','bcb','aa','bcb','a') "
- split a string at sequences of white-space characters (not keeping the white-space)

e.g. tokenize(unparsed-text('file.txt'),'\r?\n|\r')[normalize-space(.)]

- read a text file, splitting the file into lines at all sequences of an optional carriage return
followed by a linefeed, returning only those lines that are not only white-space characters

Beware unexpected results for tokenize(" a ","\s+")

- returns three items ("", "a", "")
- using normalize-space() cleans up a string before tokenizing with "\s+ "

Page 303 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespaces
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/REC-xml-names

An important role in information representation:
- vocabulary distinction in a single XML document

- mixing information from different document models
- labels in the hierarchy are globally unique and identifiable
- a metaphor is that each namespace is a dictionary with words

- each dictionary may have a different definition for the same word as found
in other dictionaries

- the namespace identifies which dictionary of words is in use
- possible use for resource discovery being considered

- generalized associated information regarding information in an instance
- possible access to document model, transforms, validation algorithms, access

libraries, etc.

Vocabulary distinction
- specifies a simple method for qualifying element and attribute names used in XML

documents
- allows the same element type name to be used from different vocabularies in a given

document
- consider two vocabularies each defining the element type named "<set> ", each

with very different semantics
- following the metaphor, the one word has two different definitions and

interpretations, one from each dictionary
- in SVG (Scalable Vector Graphics) the element <set> refers to setting a value

within the scope of contained markup
- in MathML (Mathematical Markup Language) <set> refers to a collection

of constructs treated as a set
- any document needing to mix elements from the two vocabularies may need to use

the same name
- without namespaces an application cannot distinguish which construct is

being used
- a namespace prefix differentiates the element type name suffix in an instance

- <svg:set>
- <math:set>

- composite name lexically parses as an XML name
- the use of the colon is defined by the namespaces recommendation

- also used to uniquely distinguish identification labels in some Recommendations
- e.g.: customized sort scheme label

Page 29 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Regular expressions (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

Recall the definitions of matching and non-matching substrings on page 300

replace(string, regex-match, regex-replace, optional-flags)

- returns the first argument with each matching second argument regular expression pattern
replaced with the third argument

- "$n" in the replacement string uses the matched group
- counting from 1 by the "(" characters used to capture groups
- the group $0 represents the entire matched sequence

e.g. replace('abcxacyabbbc','a.*?c','z') returns "zxzyz "
- without the "?", the entire string would have been replaced with a single "z"

e.g. replace('abcxacyabbbc','([^abc]+)','$1$1') returns "abcxxacyyabbbc "
- any sequence of characters other than "a", "b" or "c" is duplicated in the return string

e.g. replace('abcxacyabbbc','([ap])(.*?)([qc])','$3$2$1') returns "cbaxcaycbbba "
- reverse the prefix and suffix of the shortest sequence that satisfies "a" or "p" as the prefix

and "q" or "c" as the suffix

e.g. replace(.,'([\[(.:/{\\])','$1​') injects invisible breaking characters
into string

- replace punctuation characters "[", "(", ". ", ": ", "/ ", "{ " and "\ " with itself followed
by a Unicode zero-width space

- useful for massaging a URL in such a way that forced line breaks are triggered at
controlled locations in the string

e.g. replace(@name, ".*", " name=""$0""") returns a specification string
- equivalent to concat(" name=""",@name,"""") when the attribute is present

Page 304 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

URI value association
- associates element type name prefixes with Universal Resource Identifier (URI) references

whether or not any kind of resource exists at the URI
- following the metaphor, the URI uniquely identifies the dictionary of the words

- supplemental documentation defines the meaning of each of the words
- URI domain ownership under auspices of established organization
- URI conflicts avoided if rules followed

- examples:
- xmlns:svg="http://www.w3.org/2000/svg-20000629"
- xmlns:math="http://www.w3.org/1998/Math/MathML"
- xmlns:ex1="urn:isbn:978-1-894049:example"
- xmlns:ex2="urn:X-Crane:namespaces:documents:example2"
- xmlns:ex3="ftp://ftp.CraneSoftwrights.com/ns/example3"
- xmlns:ex4="mailto:gkholman@CraneSoftwrights.com"

- explicitly does not require to de-reference any kind of information from the URI
- note that the Resource Description Framework (RDF) recommendation does have

a convention of looking to the URI for information, though this is outside the scope
of the Namespaces recommendation

- according to the recommendation, the URI is only used to disambiguate otherwise identical
unqualified members of different vocabularies

The choice of the prefix is arbitrary and can be any lexically valid name
- the prefix is never a mandatory aspect of any Recommendation
- the prefix is discarded by the XML namespace-aware processor along the lines of:

- <{http://www.w3.org/2000/svg-20000629}set>
- <{http://www.w3.org/1998/Math/MathML}set>
- the above use of "{ " and "} " are a common convention but not standard
- note how the "/ " characters of the URI would be unacceptable given the lexical

rules of names, thus, the URI could never be used directly in the XML tags
- the prefix is a syntactic shortcut preventing the need to specify long distinguishing strings

Different views of the name of <svg:set> :
- "set " is the local name
- "svg:set " is the qualified name

- a name subject to namespace interpretation (prefixed or un-prefixed)
- the lexical space for the W3C Schema QName data type

- "{http://www.w3.org/2000/svg-20000629}set " is the expanded name
- combination of namespace URI (also called "namespace name") and the local part
- the value space for the W3C Schema QName data type
- the use of "{ " and "} " is not standard, but is used by some tools such as Saxon

- "http://www.w3.org/2000/svg-20000629#set " is a URI value convention

Page 30 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

String analysis in XSLT 2.0
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

Recall the definitions of matching and non-matching substrings on page 300

 Exploiting regular expressions in the analysis of strings
 <xsl:analyze-string select=" string-value" regex=" AVT" flags=" AVT">

optional <xsl:matching-substring>
optional <xsl:non-matching-substring>

 </xsl:analyze-string>

- wrap at most one <matching-substring> followed by at most one
<non-matching-substring> instructions governing the disposition of, respectively,
matched and unmatched components of the given select= expression

- the order of the child instructions is important
- at least one of the child instructions must be present

- the regex= is an attribute value template describing what constitutes a matching string
- note that if you want brace brackets in the expression they have to be doubled or

they would be interpreted as an <xsl:value-of>
- the flags= attribute has the same interpretation as the "flags" parameter of the matches()

call
- the child instructions are invoked in the order that matching and non-matching substrings

of the analyzed string are encountered
 <xsl:matching-substring>

...template...
 </xsl:matching-substring>

- add to the result tree or temporary tree the specified template for each of the matching
substrings of the analyzed string

 <xsl:non-matching-substring>
...template...

 </xsl:non-matching-substring>

- add to the result tree or temporary tree the specified template for each of the non-empty
non-matching substrings of the analyzed string

- note that this means empty non-matching substrings are ignored and never processed
in any way

. , position() and last() reflect the set of substrings
- not including empty non-matching substrings

Captured nested substrings can be accessed in <xsl:matching-substring>

- regex-group(integer)
- integer = 0 returns the entire matching string
- integer = n returns the nth captured sub-expression

- a regular-expression sub-expression begins with a left parenthesis "("

Page 305 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

An example of using namespaces in a Universal Business Language (UBL) invoice:
- for space reasons the lengthy namespace URI strings have been abbreviated
- note that namespaces are important because there are two elements with the same local

name "Location ", one in each of two different namespaces
01 <Invoice xmlns="urn:oasis:...:xsd:Invoice-2"
02 xmlns:cbc="urn:oasis:...:xsd:CommonBasicComponents-2"
03 xmlns:cac="urn:oasis:...:xsd:CommonAggregateComponents-2"
04 xmlns:ext="urn:oasis:...:xsd:CommonExtensionComponents-2"
05 xmlns:demo="urn:x-Demo:Demo">
06 <ext:UBLExtensions>
07 <ext:UBLExtension>
08 <cbc:ID>Demo1</cbc:ID>
09 <cbc:Name>Demonstration</cbc:Name>
10 <ext:ExtensionAgencyID>CSL</ext:ExtensionAgencyID>
11 <ext:ExtensionAgencyName>Crane Softwrights Ltd.
12 </ext:ExtensionAgencyName>
13 <ext:ExtensionVersionID>0.1</ext:ExtensionVersionID>
14 <ext:ExtensionAgencyURI>http://www.CraneSoftwrights.com/
15 links/res-dev.htm</ext:ExtensionAgencyURI>
16 <ext:ExtensionURI>urn:x-Demo:Demo:0.1</ext:ExtensionURI>
17 <ext:ExtensionReasonCode listURI="urn:x-Demo:Demo:ReasonCodes">1
18 </ext:ExtensionReasonCode>
19 <ext:ExtensionReason>Illustration</ext:ExtensionReason>
20 <ext:ExtensionContent>
21 <demo:Demo>
22 <demo:Thing>This is a test</demo:Thing>
23 <cbc:ID>DemoTest</cbc:ID>
24 <demo:Total currencyID="GBP">100.00</demo:Total>
25 </demo:Demo>
26 </ext:ExtensionContent>
27 </ext:UBLExtension>
28 </ext:UBLExtensions>
29

30 <cbc:ID>A00095678</cbc:ID>
31 <cbc:IssueDate>2005-06-21</cbc:IssueDate>
32 <cbc:Note>sample</cbc:Note>
33 <cac:AccountingSupplierParty>
34 <cac:Party>
35 <cac:PartyName>
36 ...

Page 31 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

String analysis in XSLT 2.0 (cont.)
Chapter 7 - Data type expressions and functions
Section 3 - String expressions

Recall the definitions of matching and non-matching substrings on page 300

Example analyses of the string "abcxacyabbbc ":
01 <xsl:analyze-string select="'abcxacyabbbc'" regex="a.*?c">
02 <xsl:matching-substring>
03 <xsl:value-of select="concat('{',.,'}')"/>
04 </xsl:matching-substring>
05 <xsl:non-matching-substring>
06 <xsl:value-of select="concat('(',.,')')"/>
07 </xsl:non-matching-substring>
08 </xsl:analyze-string>

Constructs the string: "{abc}(x){ac}(y){abbbc} "
- each matching substring is surrounded by "{ " and "} "
- each non-empty non-matching substring is surrounded by "(" and ") "
- all empty non-matching substrings are ignored

01 <xsl:analyze-string select="'abcxacyabbbc'" regex="a.*?c">
02 <xsl:matching-substring>
03
04 <xsl:value-of select="."/>
05
06 </xsl:matching-substring>
07 <xsl:non-matching-substring>
08 <xsl:value-of select="."/>
09 </xsl:non-matching-substring>
10 </xsl:analyze-string>

Constructs the marked-up result: "abcxacyabbbc "
- each matching substring is wrapped in an element named "b"
- each non-empty non-matching substring is output as is
- all empty non-matching substrings are ignored

Page 306 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Namespaces in XSLT and XSL-FO
- both files are in well-formed XML syntax

- require all namespaces used to be declared; there are no defaults
- recommendations utilize namespaces to distinguish the desired result tree vocabularies

from the transformation instruction vocabularies
- http://www.w3.org/1999/XSL/Transform

- XSL transformation instruction vocabulary
- the use of any archaic URI values for the vocabulary will not be recognized by an

XSLT processor
- http://www.w3.org/1999/XSL/Format

- XSL formatting result vocabulary
- the year represents when the W3C allocated the URI to the working group, not the

version of XSL the URI represents

Extension identification
- processors are allowed to recognize other namespaces in order to implement extensions

not defined by the Recommendations:
- functions
- XSLT instructions
- XSLT system properties
- collations
- serialization methods

- e.g.: http://www.jclark.com/xt
- extensions available when using XT

- e.g.: http://saxon.sf.net/
- extensions available when using Saxon

Page 32 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using node-set-related
expression functions
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Node-set operators and functions:
- node-sets obtained from source trees
- effective Boolean value of an empty node set is false , all other node sets test true

operator |
- union of node-sets into a new node-set
- the same node is never duplicated in a node set
- result set is always ordered in document order

 operator union

- return the union of members of both operands while eliminating duplicates

 operator intersect

- return the members that are found in both operands while eliminating duplicates

 operator except

- return the members of the left operand that are not found in the right operand

Node

set

$A

(X+Z)

Node

set

$B

(Y+Z)
X
 Y

Z

"$A union $B"
 returns
 X
 +
Y
 +

Z
 (no duplicates)

"$A intersect $B"
 returns
 Z
 (no duplicates)

"$A except $B"
 returns
 X

(common)

The one expression used to get only both portions named "X" and "Y" found in the diagram:
- "($A union $B) except ($A intersect $B) "

Page 307 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespaces (cont.)
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

Naming of top-level constructs in XSLT
- libraries of transform fragments can isolate their constructs by using unique namespace

URI strings
- building upon an existing library is done without risking the integrity of the existing

stylesheets when one is disciplined about the naming of constructs
- in the following example, two different variables are declared because of the unique

namespace URI strings (the prefixes are immaterial)
- the first is in namespace "urn:X-a " and the second is in namespace "urn:X-b "

- 01 <xsl:variable name="a:thing" select="'abc'" xmlns:a="urn:X-a"/>
02 <xsl:variable name="a:thing" select="'def'" xmlns:a="urn:X-b"/>

- stylesheet-defined function names must be namespace qualified
- the default namespace is never used for naming top-level constructs

Page 33 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using node-set-related
expression functions (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

The following illustrates name-related functions that all optionally use a node-set argument:
- operate on the current node if no argument supplied
- operate on the give node if a singleton node set supplied
- operate on the first node found in a node set argument of more than one node
- trigger a runtime error for a node set argument of more than one node
- return the empty string for an empty node set argument

.... xmlns:data="http://www.mycompany.com/ns/purchase" ...

<data:order-number>

local-name(
 node
)
 namespace-uri(
 node
)
name(
 node
)

{http://www.mycompany.com/ns/purchase}order-number

node-name(
 node
)

 namespace-uri(optional-node-set)

namespace-uri(optional-node)

- returns the namespace name (URI) of the qualified namespace name as a string

 local-name(optional-node-set)

local-name(optional-node)

- returns the local part of the node name as a string
- does not include the namespace prefix if one was used for the node

 name(optional-node-set)

name(optional-node)

- name() returns the qualified name as a string
- includes the namespace prefix if one was used for the node

 node-name(optional-node)

- node-name() returns the expanded name as a QName comparison value
- the lexical value is the node's name including any present prefix

Recall the discussion regarding namespace terminology (page 30).

Page 308 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Stylesheet association
Chapter 1 - The context of XSLT and XPath
Section 1 - The XML family of Recommendations

- http://www.w3.org/TR/xml-stylesheet

Relating documents to stylesheets
- associating one or more stylesheets with a given XML document
- same pseudo-attributes and semantics as in the HTML 4.0 recommendation elements:

- <LINK REL="stylesheet">
- <LINK REL="alternate stylesheet">

Ancillary markup
- not part of the structural markup of an instance, thus it is marked up using a processing

instruction rather than first-class (declared or declarable in a document model) markup

Typical examples of use:
01 <?xml-stylesheet type="text/xsl" href="../xs/xslstyle-docbook.xsl"?>

01 <?xml-stylesheet type="text/css" href="normal.css"?>

Less typical examples provided for by the design:
01 <?xml-stylesheet alternate="yes" title="small"
02 href="small.xsl" type="application/xslt+xml"?>

- provide the processor with an alternate stylesheet if some external stimulus triggers it
by name

01 <?xml-stylesheet href="#style1" type="application/xslt+xml"?>

- instruct the processor to find the stylesheet embedded in the source document at the
named location

Important note about type= values for associating XSLT:
- type="text/xsl" is not a registered MIME type

- the only type recognized by IE for the use of XSLT
- type="application/xslt+xml" has been proposed in IETF RFC 3023
- type="text/xml" is reported to be supported by some processors

See XSLStyle™ (page 523) for an embedded XSLT documentation methodology

Page 34 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using node-set-related
expression functions (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

 nilled(optional-node)

- returns Boolean indication of the node being an element that has been nilled according
to W3C Schema definition

 data(optional-item-sequence)

- returns the typed values of members of the sequence as a sequence
- recall the discussion of data model node values on page 77

 base-uri(optional-node)

- returns the absolute base URI for the given node or the current node if no node is specified
- accommodates the presence of xml:base in the tree

- useful for determining absolute URI values from relative URI strings
- recall the physical hierarchy illustrated on slide 9

- the base URI of a node found in the fragment from "d.xml " is the absolute URI of
the "ddir/d.xml " as shown at the left

- when used for URI resolution only the absolute directory up to "ddir " is used

 static-base-uri()

- returns the absolute base URI string for the instruction node in the operation tree

 root(optional-node)

- returns the root node of the node tree for the given node or the current node if no node
is specified

- irrespective of the entity structure, the root node is the top of the entire XML
document

 document-uri(optional-root-node)

- returns the absolute document URI for the given node, or the current node if no node is
specified, only if the supplied node is a document node

- otherwise the empty sequence is returned
- it is possible that the tree of nodes was not created from a URI, thus the function will

return the empty string
- e.g. a temporary tree
- e.g. an in-memory-only source tree

Page 309 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transformation from XML to XML
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

The basic behavior is to transform a hierarchical input into a hierarchical result tree:
- that result tree may be emitted as an XML instance

XML

Transform

Process

XML

XSLT/

XQ

source data

projection

result

documents

transform

XML

Transform

Process

XML

source

nodes

XSLT/

XQ

Transform

Process

XML

transform

Result

Result

Result

data sources

Flat

files

Data

bases

Feeds

XML

source

document

Of note:
- a given transform can be applied to more than one XML structure
- a given XML structure can have more than one transform applied
- a given XML structure can be derived from an XML file or projected from some other

data source identified by the transform
- the result of construction is the abstract result tree within the transform process serialized

to the emitted XML under the control of the process
- the dotted triangle in the process represents the abstract node tree of the result

Diagram legend
- processes represented by rectangles
- hierarchical structures represented by triangles

- a tree structure with the single root at the left point and the tree expanding and
getting larger towards the leaves at the right edge

- XML files are drawn with a solid line, node structures are drawn with a dotted line
- unstructured files represented by parallelograms

Page 35 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node-set intersection and difference in XSLT 1
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Sometimes it is necessary to determine the intersection or difference of two node-sets selected
from the source tree. The following expression, colloquially referred to as the "Kaysian Method"
after Mike Kay who first proposed this use of XPath, will select only those nodes that are in
both of two node-set variables named set1 and set2 :

- $set1[count(.|$set2)=count($set2)]

The above expression takes advantage of the XPath union operator to determine that a given
node doesn't impact on the count of nodes of the union of the node and the second node-set.
The predicate returns true when the count isn't affected, thus including the member being
tested. It is not necessary to test the members of the second set because the intersection would
have to include members of the first set, all of which are being tested in the above expression.

The symmetric difference requires an expression involving the union of the determination of
those nodes in each set that are not in the other set:

- ($set1[count(.|$set2)!=count($set2)]
 | $set2[count(.|$set1)!=count($set1)])

Page 310 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transformation from XML to non-XML
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

A processor may choose to recognize the transform's request to serialize a non-XML
representation of the result tree:

- triggered through using an output serialization method supported by the processor

Shared serialization specification between XSLT 2.0 and XQuery 1.0
- http://www.w3.org/TR/xslt-xquery-serialization/

At least two non-XML tree serialization methods common to all specifications:

XML

Transform

Process

HTML

XSLT/

XQ

source

nodes

result

document

transform

Result
 XML

Transform

Process

XSLT/

XQ

source

nodes

result

document

transform

Result
 Text

- html
- HTML markup and structural conventions

- some older HTML user agents (e.g. browsers) will not correctly recognize
elements in the HTML vocabulary when the instance is marked up using
XML conventions (e.g.
 must be
), thus necessitating the
interpretation of HTML semantics when the result tree is emitted

- using this will not validate the result tree output as being HTML
- if the result is declared HTML but the desired output isn't HTML, the

HTML semantics could interfere with the markup generated
- HTML built-in character entities (e.g.: accented letters, non-breaking space, etc.)

- text
- simple text content with all element start and end tags removed and ignored
- none of the characters are escaped on output
- example of use: creating operating system batch and script files from structured

XML documents

Page 36 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node-set intersection and difference in XSLT 1
(cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

The following script illustrates the assignment of two node-set variables from a common area
of the source tree (in this case the stylesheet is also the source tree) and the intersection and
symmetric difference of those two variables:
01 <?xml version="1.0"?><!--intrdiff.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 xmlns:data="crane"
05 version="1.0">
06

07 <xsl:output method="text"/>
08

09 <data:data> <!--data source for testing purposes-->
10 <item>1</item><item>2</item><item>3</item>
11 <item>4</item><item>5</item><item>6</item>
12 </data:data>
13

14 <xsl:template match="/"> <!--root rule-->
15 <xsl:variable name="ns1" select="//item[position()>1]"/>
16 <xsl:variable name="ns2" select="//item[position()<5]"/>
17

18 <xsl:for-each select="$ns1[count(.|$ns2)=count($ns2)]">
19 Intersection: <xsl:value-of select="."/>
20 </xsl:for-each>
21 <xsl:for-each select="($ns1[count(.|$ns2)!=count($ns2)]
22 | $ns2[count(.|$ns1)!=count($ns1)])">
23 Difference: <xsl:value-of select="."/>
24 </xsl:for-each>
25 </xsl:template>
26

27 </xsl:stylesheet>

When run with itself as input, the following is the result:
01 Intersection: 2
02 Intersection: 3
03 Intersection: 4
04 Difference: 1
05 Difference: 5
06 Difference: 6

Page 311 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transformation from XML to non-XML (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

 No standardized support for XHTML lexical conventions
- a processor could offer a custom extension, but many (possibly all?) do not

 Standardized support for XHTML lexical conventions
- xhtml

- browser compatibility guidelines for empty tags for elements defined to be empty
- no markup minimization for empty elements for elements not defined to be empty

XML

Transform

Process

XHTML

XSLT/

XQ

source

nodes

result

document

transform

Result

Page 37 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

User XML identifier referencing
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Built-in table of elements keyed by their user-specified unique identifier:

Recall that element nodes in the source node tree can have unique identifiers defined by the
presence of XML attributes of type ID . It is a common practice to implement cross referencing
from other elements using XML attributes of type IDREF or IDREFS that point to the unique
identifiers of elements with the corresponding ID attribute.

- a validity constraint that IDREF be an XML name
- a validity constraint that IDREFS be one or more XML names

The following illustrates how a processor maintains ID information from an XML instance:

<
!ATTLIST

 element-name

 attribute-name

 ID
 default-decl
 >

id(
 tokenized-strs

 {,
 tree-node
 })

Element
 ID value

unique-token-1

D
oc

um
en

t O
rd

er

ID Table

source

tree
 operation tree

unique-token-2

unique-token-3

unique-token-4

DTD declaration subset

 Requires the presence of DTD declarations
- ATTLIST declaration indicates the "ID -ness" of an attribute
- the name of the attribute is irrelevant

 Requires the presence of either DTD declarations or schema-awareness of W3C Schema
declarations

- an attribute is not known to be of type ID unless it is declared such

 Reserved xml:id= attributes are automatically recognized
- no declarations are required as the semantic of the reserved name is recognized

Recall Attribute node (page 84)
- one can declare a minimal DTD containing relevant ID declarations

The table does not include generated identifiers from the node tree
- recall from page 77 that every node of every tree has an automatically-generated identifier

created anew with every transform using a custom alphanumeric pattern chosen by the
processor

Page 312 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transformation from XML to non-XML (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

 Only standardized support for a single result tree
- most XSLT processors offer a custom extension, but there is no obligation to do so and

it is not standardized

 Standardized support for multiple result trees
- each result tree can have the same or different serialization
- multiple result trees are not accessible to a single XSL-FO process

XSLT

Process

XML

XML

XSLT

source

nodes

result

documents

stylesheet

Result

Result

Text

Page 38 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

User XML identifier referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Finding elements by their unique identifier:
id(non-node-set-value-converted-to-string)

 id(non-node-set-value-converted-to-string, tree-node)

- returns the union of all nodes with identifier equal to tokenized string
- converts the argument into a string as with normalize-space()
- splits the resulting string into set of tokens
- find element nodes whose unique identifier is in the set of tokens
- the tree node specifies in which tree the search is done and if not specified the search is

in the same document as the current node
id(node-set)

 id(node-set, tree-node)

- returns the union of the call to id() with the string value of each of the nodes
- note that the nodes used in the node-set argument need not be attribute nodes, and if any

one is an attribute node, it need not be an attribute of XML type IDREF, as the value
obtained is just used as a string

- of course the node could, indeed, be an attribute node of type IDREF

See Document referencing in XSLT (page 268) for an important consideration regarding
addressing unique identifiers in multiple source documents.

A separate ID table is maintained for each source document
- the table that is accessed is that for the document in which the current node is found

Page 313 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Transforming and rendering XML information
using XSLT and XSL-FO
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

When the XSLT result tree is specified to utilize the XSL-FO formatting vocabulary:
- the normative behavior is to interpret the result tree according to the formatting semantics

defined in XSL for the XSL-FO formatting vocabulary
- an inboard XSLT processor can effect the transformation to an XSL-FO result tree
- the XSL-FO result tree need not be serialized in XML markup to be conforming to the

recommendation (though useful for diagnostics to evaluate results of transformation)

XSL Processor

XML
 Print
XSLT

Process

Print

Process

XSLT/

XSL-FO

source

document

result

tree

transformation

script

Display

Process

Display

XSL-FO

XSL Formatting and

Flow Object Semantics

Interpretation

in Each Domain

optional

serialized

XML

Aural

Process

Aural

XSL-FO

Of note:
- the stylesheet contains only the XSLT transformation vocabulary, the XSL formatting

vocabulary, and extension transformation or foreign object vocabularies
- the source XML contains the user's vocabularies
- the result of transformation contains exclusively the XSL formatting vocabulary and any

extension formatting vocabularies
- does not contain any constructs of the source XML or XSLT vocabularies

- the rendering processes implement for each medium the common formatting semantics
described by the XSL recommendation

- for example, space specified before blocks of text can be rendered visually as a
vertical gap between left-to-right line-oriented paragraphs or aurally as timed silence
before vocalized content

Page 39 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

User XML identifier referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Examples of being used stand-alone:
- id("buyer")

- returns the element whose unique identifier is the string value "buyer "
- id(" buyer seller ")

- returns the elements whose unique identifier is either the string value "buyer " or
"seller "

- id(@where)
- returns the element whose unique identifier is the same value as the value of any

of the space-separated tokens in the where= attribute of the current node
- id(where)

- returns the element whose unique identifier is the same value as the value of any
of the space-separated tokens in all of the where children elements of the current
node

- note in this example that one is not obliged to use IDREF attributes for the
argument to the function

- any string can be used as an argument

Can be first step in a multiple-step location paths and can have predicates applied to the returned
node-set:

- id(@where)/phone[2]
- returns the set of the second phone child elements of all elements referenced by

the identifiers found in the where= attribute of the current element node
- id(@where,$tree)/phone[2]

- here the variable $tree is a singleton node set with a node from the desired tree
- $trees/id($where,.)/phone[2]

- here the variable $trees is an arbitrary node set from which one node at a time is
passed to the id() function

- $where is a variable with the tokens to be searched in all trees
- the return set is the union of all second phone number children of those nodes

referenced by the tokens in the $where variable that are found in all trees

Page 314 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XML to binary or other formats
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

Some non-XML requirements are neither text nor HTML
- need to produce composition codes for legacy system
- binary files with complex encoding
- custom files with complex or repetitive sequences

One can capture the semantics of the required output format in a custom XML vocabulary
- e.g.: "CVML" for "Custom Vocabulary Markup Language"
- designed specifically to represent meaningful concepts for output

XML

XSLT

Process

CVML

CVML

Interpreter

(SAX/DOM)

XSLT/

CVML

source

document

result

document

transformation

script

Non-

XML

result file

Result

Custom

Vocabulary

Semantics

Interpretation

A single translation program (drawn as "CVML Interpreter"):
- can interpret all XML instances using the custom vocabulary markup language (e.g.

CVML) to produce the output according to the programmed semantics
- is independent of the XSLT stylesheets used to produce the instances of the custom

vocabulary
- allows any number of stylesheets to be written without impacting the translation to the

final output
- divorces the need to know syntactic output details

- output is described abstractly by semantics of the vocabulary
- output is serialized following specific syntactic requirements

Page 40 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

User XML identifier referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

 Finding pointers to unique identifiers:

Elements with attributes of type ID can be referred to by attributes of type IDREF or IDREFS

- W3C Schema allows elements to also be declared as type IDREF or IDREFS
- many nodes can be pointers to a single element with an ID -typed attribute

The following illustrates how a processor maintains IDREF information from an XML
instance:

<
!ATTLIST

 element-name

 attribute-name

 IDREF
 default-decl
 >

idref(
 tokenized-strs

 {,
 tree-node
 })

Node
 IDREF value

id-token-1

D
oc

um
en

t O
rd

er

IDREF Table

source

tree
 operation tree

id-token-2

id-token-3

id-token-2

DTD declaration subset

(and also

IDREFS
)

 Requires the presence of either DTD declarations or schema-awareness of W3C Schema
declarations

- an attribute is not known to be of type ID unless it is declared such

 idref(non-node-set-value-converted-to-string)

 idref(non-node-set-value-converted-to-string, tree-node)

 idref(node-set)

 idref(node-set, tree-node)

- returns all of the element or attribute nodes declared as type IDREF that are referencing
the supplied set of values interpreted as ID values

A separate IDREF table is maintained for each source document
- the table that is accessed is that for the document in which the current node is found

Page 315 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XML to binary or other formats (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

The XSLT recommendation is extensible providing for vendor-specific or application-specific
output methods:

- xmlns: prefix=" processor-recognized-URI"
- prefix: serialization-method-name

- vendors can choose to support additional built-in tree serialization methods
- output can be textual, binary, dynamic process (e.g.: database load), auditory, or

any desired activity or result

The ability to specify vendor-specific or implementation-specific output methods allows
custom semantics to be interpreted within the modified XSLT processor, thus not requiring
the intermediate file:

XML

XSLT

Process

CVML

Interpreter

(SAX/DOM)

source

document

result

tree

transformation

script

Non-

XML

result file
Customized XSLT Processor

CVML

Custom

Vocabulary

Semantics

Interpretation
XSLT/

CVML

Page 41 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data-model identifier referencing
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Authored identifiers are only unique within the scope of a single XML document
- may be duplicated in an aggregation when combining multiple XML documents

- at which point they are no longer unique
- recall that every node has a unique system-generated identifier (page 77)

 generate-id(optional-node-set)

 generate-id(optional-node)

- returns an opaque implementation-dependent string that should be used blindly as a
unique identifier for the node as a string

- lexically parsed as a valid XML name with only alphanumeric characters (no "_"
or ". ")

- not guaranteed to be exclusive of ID/IDREF values
- operate on the current node when no argument is supplied
- operate on the first node found in a non-empty node-set argument
- an error is reported if more than one node is supplied
- returns an empty string for an empty node-set argument

- the string is different for every node across all node trees
- the string is persistent for each node through only the given invocation of the XSLT

processor and a given value cannot be relied upon from any other invocation
- very important when aggregating from multiple XML source trees

- authored ID values in multiple trees are not mutually exclusive
- generated ID values in multiple trees are guaranteed to be mutually exclusive

- when visiting the node at the time of anchoring the reference:
- HTML:
- XML: <element id="{generate-id(.)}">

- can be used to synthesize hyperlinks where ID/IDREF is available
- when visiting the referring node:

- HTML:
- XML: <element idref="{generate-id(id(@idref))}">

- can be used to synthesize hyperlinks where ID/IDREF unavailable
- when visiting the node at the time of making the reference:

- HTML:
- XML: <element idref="{generate-id(.)}">

- can be used to compare two nodes as being the same node
- simple equality is insufficient because it uses the value of a node
- using the generated identifier is sufficient because of the uniqueness constraint
- test="generate-id($a)=

 generate-id($b)"
- test="$a is $b"

Page 316 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT as an application front-end
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

A legacy application can utilize an XSLT processor to accommodate arbitrary XML
vocabularies

- making an application XML-aware involves using an XML processor to accommodate
a vocabulary expressing application data semantics

- event driven using SAX processing and programming
- tree driven using DOM processing and programming
- without XSLT, each different XML vocabulary would need to be accommodated

by different application integration logic
- an application can engage an XSLT processor and directly access the result tree

- single process programmed to interpret a single markup language
- each different XML vocabulary is accommodated by only writing a different XSLT

stylesheet
- each stylesheet produces the same application-oriented markup language

- no reification of the result tree is required

XML

source

documents

User-XML-1

transformation

script

User-XSLT-1
XSLT/

CVML

Application

Application

Semantics

Non-

XML

XML-Aware Application

Application

Semantics
CVML

CVML

Interpreter

(SAX/DOM)

XML/XSLT-Enabled Application

Application

Semantics

CVML

Interpreter

(SAX/DOM)

XSLT

Process

result

tree

CVML

XML

source

documents

User-XML-2
 transformation

script

User-XSLT-2

XSLT/

CVML

XML
U-1

XML

XML
U-2

XML

Non-

XML

Non-

XML
 CVML
CVML

XML

source

documents

CVML

Page 42 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data-model identifier referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Examples of using generate-id() :

Identification of node during processing:
- consider when the node's position has to be identified in a different context than the

current node list in which the node is being processed
- since the node's generated identifier is persistent for the execution of the script (but not

after the script has completed), it can be assigned to a variable and checked at any time
- in this example, the template is being called from elsewhere in the script and the location

of the current node is evaluated in an arbitrary node list (not the current node list when
the template was invoked):
01 <xsl:template name="node-position-in-node-and-attr-set">
02 <xsl:variable name="this-id" select="generate-id(.)"/>
03 <!--current node list of parent's children and attributes-->
04 <xsl:for-each select="../node()|../@*">
05 <xsl:if test="generate-id(.)=$this-id"> <!--found saved id-->
06 <xsl:value-of select="position()"/><!--using new context-->
07 </xsl:if>
08 <!--note the performance hit by having to go through all
09 the nodes even *after* finding the desired node-->
10 </xsl:for-each>
11 </xsl:template>

Unique naming of nodes for output stream:
- consider the need to generate a hyperlinked table of contents where there is no handy

XML ID construct to be used to uniquely identify the elements:
01 <?xml version="1.0"?>
02 <test>
03 <section><title>First Section</title>
04 <para>The content of the section is here.</para></section>
05 <section><title>Second Section</title>
06 <para>The content of the section is here.</para></section>
07 <section><title>Third Section</title>
08 <para>The content of the section is here.</para></section>
09 </test>

Page 317 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Three-tiered architectures
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

To support a legacy of user agents that do not support XML:
- web servers can detect the level of support of user agents
- where XML and XSLT or XQuery are not supported in a user agent:

- the host can take on the burden of transformation
- where XML and XSLT or XQuery are supported in a user agent

- the burden of transformation can be distributed to the agent
- the XML information can be massaged before being sent to the agent

- allows information to be maintained in XML yet still be available to all users

Web Host

XML Browser

XML Browser

XML

Transform

Process

XSLT/

XQ

source

document

transform

XSLT/

XQ

Transform

Process

transform

Display

HTML Browser

Transform

Process

Display

XSLT/

XQ

transform

Transform

Process

Display

HTML

Transform

XML

XML

Transform

Transform

Process

XML Browser

Transform

Process

Display
XML

XML Browser

Transform

Process

Display

XSLT

/XQ

XML

Page 43 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data-model identifier referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

The following script will use the XSLT-processor-generated node identifiers in place of XML
ID identifiers:
01 <?xml version="1.0"?><!--genid.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:template match="/">
07 <html>
08 <h2>Table of Contents</h2>
09 <xsl:for-each select="//section/title">
10 <xsl:value-of select="."/>
11

12 </xsl:for-each>
13 <xsl:apply-templates/>
14 </html>
15 </xsl:template>
16

17 <xsl:template match="title">
18 <h2><xsl:value-of select="."/>
19 </h2>
20 </xsl:template>
21

22 <xsl:template match="para">
23 <p><xsl:apply-templates/></p>
24 </xsl:template>
25

26 </xsl:stylesheet>

Note again that the persistence of the values is guaranteed only within the execution of the
script and not afterwards to any subsequent execution of the script. The above technique is
not appropriate when needing to point into the result from other files in a persistent manner
(where using ID would be useful for that purpose).

Page 318 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Three-tiered architectures (cont.)
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

Always performing server-side transformation:
- good business sense in some cases

- even if technically it is possible to send semantically-rich information
- never send unprocessed semantically-rich XML

- or only send it to those who are entitled to it
- for security reasons
- for payment reasons

- translation into a presentation-orientation
- using a markup language inherently supported by the user agent (e.g. HTML)
- using a custom, semantic-less markup language with an associated transformation

- "semantic firewall"
- to protect the investment in rich markup from being seen where not desired
- no consensus in the community that semantic firewalls are a "good thing"

Page 44 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT key node referencing
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

The stylesheet can identify key nodes of the source tree for subsequent fast access by the XSLT
processor:

Key Table

<
xsl:key

 name="
 table-qname
 "

 match="
 p
attern
 "

 use="
 value-expr
 "/>

key("
 table-qname
 ",

 lookup-value

 {,
 top-node
 })

Key node
 Associated value

value-1

value-2

value-3

value-2

D
oc

um
en

t O
rd

er

source

tree
 stylesheet

 <xsl:key name=" table-qname" match=" pattern" use=" string-expr"/>

 <xsl:key name=" table-qname" match=" pattern" use=" value-expr"/>

 <xsl:key name=" table-qname" match=" pattern" use=" value-expr"
 collation=" uri"/>

- identifies all source tree nodes for each declared key for stylesheet manipulation with a
simple name

- builds lookup table of member items based on an equality test for the lookup value
- e.g.: relate all employee records to the employee's respective manager's employee record

matching each employee's ManagedBy child element's value with the corresponding
employee record with the same value for its emp= attribute

The XSLT processor can optimize searching in the lookup table
- all values are fixed after the source tree is processed
- the processor can index the table for quick retrieval based on lookup value
- faster return of selected nodes than traversing the axes using XPath expressions and

predicates evaluated at the point of reference

Page 319 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT and XQuery on the wire
Chapter 1 - The context of XSLT and XPath
Section 2 - Transformation data flows

XSLT and XQuery have a role in a large or small network cloud:
- simple transformation services can be made available to users on the network, unburdening

the user's own infrastructure

Publish/

Subscribe
XML

XML

XML
XML

XML

XML

Transform

Process

Transform

Process

Transformation
 Aggregation

Transform

Process

Publish/Subscribe
- a network service can accept subscription requests from across the network
- the XML document from the publisher is routed to all subscription destinations
- a subscriber can request a transformation process so as to receive the published

information in the desired structure

Aggregation
- a network service can accept XML documents from across the network
- a user of the service can receive the aggregate of all of the information
- the information can be transformed into a homogenous collection for ease of processing

and analysis

Transformation
- a user of the network can utilize wire-speed transformation of outgoing and incoming

documents to a peer

Page 45 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT key node referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Establishing a lookup table of key relationships in a declarative fashion

When indexing behavior similar to XML ID /IDREF attribute cross-referencing values is required
by the content of either an attribute or an element, the stylesheet writer can define and reference
key values reflecting the implicit cross-references:

- keys have three aspects of definition in the <xsl:key> top-level instruction:
- the namespace-qualified name of the key

- name="qname-of-key-table"
- the collection of key nodes distinguished from other collections of key nodes
- multiple declarations with the same name cumulatively build the members

in the collection of that name
- the nodes that have the key

- match=" identifying-pattern-of-nodes-in-key-table"
- a XPath matching pattern expression

- similar to count= attribute in <xsl:number/>
- the lookup values of the keyed nodes

- use=" expression-evaluating-the-value-of-key-in-the-set"
- an XPath selection expression

- if relative, then evaluated relative to each keyed node
- expression evaluated to a string
- string values need not be unique

- nodes with like values are ordered in document order
- the lookup values of the keyed nodes

- collation=" collation-overriding-default-collation"
- the index built for a key is somewhat dissimilar to ID /IDREF

- key values in the set need not be unique
- there can be multiple key nodes in a document with the same node, same key

name, but different key values
- there can be multiple key nodes in a document with the same key name, same

key value, but different nodes
- a key's value need not be parsed as an XML name token

- a node relative to the key node can represent the key's value
- a key's value can be the result of an arbitrary expression evaluated with the

key node as the current node
- a lookup value need not be present in the collection

Note that a variable reference cannot be used in either the match= or use= expressions.

Page 320 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 2 - Getting started with XSLT and XPath

- Introduction - Getting started
- Section 1 - Transform examples
- Section 2 - Syntax basics
- Section 3 - Approaches to transform design
- Section 4 - More transform examples

Outcomes:

- analyze the different components of a few example transforms
- introduce the concepts of instructions and templates

Page 46 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT key node referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Using a key

key(table-qname, non-node-set-value-converted-to-string)

key(table-qname, non-node-set-value-expression)

key(table-qname, non-node-set-value-expression, top-node)

- returns that subset of key nodes whose indexed key value is equal to the given string
lookup value

- if the top node is specified then all nodes returned are those found at or below the given
node

key(table-qname, node-set)

key(table-qname, node-set, top-node)

- returns the union of the call to key() with the value of each of the nodes in the node set
as a lookup value

- if the top node is specified then all nodes returned are those found at or below the given
node

Can have predicates applied to the returned node-set:
- key('taxes', 'Canada')[1]

- returns only the first node of all nodes in the 'taxes ' key table whose lookup value
is the string 'Canada '

- like lookup values are returned in document order of the nodes indexed, thus, this
returns the first such node in document order

- key('taxes', 'Canada')[@type='federal'][1]
- of all nodes returned by the key function, return only the first whose type= attribute

is 'federal '

The third argument must be a singleton node
- consider an example where the variable $seq has more than one node and you need all

values under all nodes
- key('tablename','lookup',$seq) is invalid
- $seq/key('tablename','lookup',.) is acceptable

- there is only one node being passed to the key() function at a time
- returns all lookup values under all nodes in $seq

- similarly, if $seq was constrained to be optional, the same technique would prevent an
error when the value was absent

A separate set of key tables is maintained for each source document
- the table that is accessed is that for the document in which the current node is found

Page 321 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Getting started
Chapter 2 - Getting started with XSLT and XPath

A few simple transformations:
- using Saxon

- Saxon 6.5.5 (and later) support XSLT 1.0
- Saxon 9 (and later) support XSLT 2.0 and XQuery 1.0

- using Internet Explorer 5 or greater
- for IE5, the updated MSXML processor (at least the third Web Release of March

2000) is needed to support the W3C XSLT 1.0 Recommendation
- the IE6 production release supports the W3C XSLT 1.0 Recommendation

Dissect example transforms
- identify transform components as an introduction to basic concepts covered in more

detail in the later chapters

This material has a number of handy references harvested from the specification documents:
- XSLT 1.0 element summary (page 480)
- XPath 1.0 and XSLT 1.0 function summary (page 485)
- XPath 1.0 grammar productions (page 488)
- XSLT 1.0 grammar productions (page 491)
- XSLT 2.0 element summary (page 492)
- XPath 2.0 and XSLT 2.0 function summary (page 502)
- XPath 2.0 grammar productions (page 513)
- XSLT 2.0 grammar productions (page 517)

Page 47 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT key node referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

The following illustrates how keys can be used to obtain the value of an employee's name
indirectly from the value of an attribute (though another model might have the value in a child
element's content) used to reference the employee information of a manager:

KEY NAME:
 people

node

value

<Employee> 6789

<Employee> 1234

The input:

<Employee>

<SSN>6789</SSN>

<Name>Joe Green</Name>

<ManagedBy emp="1234"/>

</Employee>

<Employee>

<SSN>1234</SSN>

<Name>John Smith</Name>

</Employee>

The stylesheet:

<xsl:key name="people" match="Employee" use="SSN"/>

<xsl:template match="ManagedBy">

 <xsl:value-of select="key('people',@emp)/Name"/>

</xsl:template>

Start Here

1

2

3
 4

5

6

7

8

The Key

collection:

Page 322 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Some simple examples
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Consider the following XML file hello.xml obtained from the XML 1.0 Recommendation
and modified to declare an associated stylesheet:
01 <?xml version="1.0"?>
02 <?xml-stylesheet type="text/xsl" href="hello.xsl"?>
03 <greeting>Hello world.</greeting>

This is the complete logical tree of the entire instance:

Root

Processing Instruction

name="xml-stylesheet"

value="
 type="text/xsl" href="hello.xsl"
 "

Element

local-name="greeting"

namespace=""

Text

"
Hello world.
 "

Namespace

name="xml"

value="http://www.w3.org/XML/1998/namespace"

Note that there is no node in the tree created by the XML Declaration
- the XML Declaration is a syntactic signal in an XML instance regarding the encoding

and version of XML being used
- it is consumed by the XML processor as part of the parsing process and is not delivered

to an application

Page 48 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT key node referencing (cont.)
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

The following steps correspond to the diagram indicating how the value "John Smith" is
obtained as the name of the manager of "Joe Green" indirectly through the emp= attribute of
the <ManagedBy> element:

1 the template rule for <ManagedBy> needs to calculate a value from another node based
on an attribute value in emp= (in another model it could just as well be based on an
element node's value rather than an attribute node's value)

2 the target value calculation begins by first referencing the key named "people ", using
the first argument to the key() function, specifying which of the lookup key tables that
were created by the XSLT processor based on values found in the source tree

3 the key named "people " is declared in a top-level <xsl:key> element building a table
of nodes matching the given node-set expression indicated with match= (all element
nodes named "Employee ")

4 the use= attribute specifies the expression whose evaluated value, relative to each match=
node, that is used for the lookup comparison value in the key table (the value of the first
child element node named "SSN" relative to the element nodes named "Employee ")

5 the second argument to key() function indicates the node (emp= attribute) relative to
the current node (ManagedBy element) whose value is used for the search comparison
with the key values (the attribute node for emp=)

6 the example indicates the string value "1234 " is what is searched for among the key
lookup values

7 key() returns all key nodes (Employee elements) whose lookup value is the string
equivalent of the expression value for what is being searched for (only one node in this
example)

8 the <xsl:value-of> is calculated by then evaluating the complete expression by
obtaining the XPath expression (the child element node named "Name") relative to the
returned set of key nodes (Employee elements), thus returning the resulting value (the
string "John Smith")

Note that the evaluation of key('people','1234') would have produced the same result
since the lookup value is the supplied string instead of an evaluated expression.

Page 323 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Consider the following XSLT file hellohtm.xsl to produce HTML, noting how much it
looks like an HTML document yet contains XSLT instructions:
01 <?xml version="1.0"?>
02 <!--hellohtm.xsl-->
03 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
04 <html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 xsl:version="1.0">
06 <head><title>Greeting</title></head>
07 <body><p>Words of greeting:

08 <i><u><xsl:value-of select="greeting"/></u></i>
09 </p>
10 </body>
11 </html>
12

Using an MSDOS command line invocation to execute the stand-alone processor explicitly
with a supplied stylesheet, we see the following result:
01 C:\ptux\samp>java -jar ../prog/saxon.jar hello.xml hellohtm.xsl
02 <html>
03 <head>
04 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
05 <title>Greeting</title>
06 </head>
07 <body>
08 <p>Words of greeting:
<i><u>Hello world.</u></i></p>
09 </body>
10 </html>
11 C:\ptux\samp>

Note how the end result contains a mixture of the stylesheet markup and the source instance
content, without any use of the XSLT vocabulary. The processor has recognized the use of
HTML by the type of the document element and has engaged SGML markup conventions.

The <meta> element on line 4 added by Saxon is ensuring the character set of the web page
is properly recognized by conforming user agents.

Page 49 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Current node referencing in XSLT
Chapter 7 - Data type expressions and functions
Section 4 - Node-set expressions

Referencing the current node from the start of an expression:

Remembering how the current node changes during expression evaluation, it is sometimes
important in the middle of an expression to reference that node that was the current node before
evaluation began.
current()

- re-orients within an XPath expression to the current node in the context in use at the start
of the expression

Consider an example of comparing a remote node's attribute value to the attribute value of the
current node. This can be accomplished using a variable to store the value of an attribute
relative to the current node at the start of the expression evaluation for the <xsl:for-each>
below:

- recall that after the frame node test, the context is changed to each frame element for
the evaluation of the predicate

01 <xsl:template match="module">
02 <xsl:variable name="mod-label" select="@mod-label"/>
03 <xsl:for-each select="id(@other-module)//
04 frame[@frame-label=$mod-label]">
05 <!--template-->
06 </xsl:for-each>
07 </xsl:template>

During the evaluation of the predicate, the expression evaluation can revert to the current node
of the start of expression evaluation (the module element) as follows, thus producing the
equivalent expression without the use of a variable declaration and assignment:
01 <xsl:template match="module">
02 <xsl:for-each select="id(@other-module)//
03 frame[@frame-label=current()/@mod-label]">
04 <!--template-->
05 </xsl:for-each>
06 </xsl:template>

current() is different than the ". " abbreviation
- ". " represents the current node at the point of evaluation in the expression
- current() returns the current node at the start of evaluation of the expression

Page 324 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Consider next the following XSLT file hello.xsl to produce XML output using the HTML
vocabulary, where the output is serialized as XML:
01 <?xml version="1.0"?><!--hello.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03

04 <xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06

07 <xsl:output method="xml" omit-xml-declaration="yes"/>
08

09 <xsl:template match="/">
10 <i><u><xsl:value-of select="greeting"/></u></i>
11 </xsl:template>
12

13 </xsl:transform>

Remember that the syntax of the transform does not represent the syntax of the result, only
the nodes of the result; the following is the node tree (not showing attribute and namespace
nodes) of the stylesheet:

Element
 local-name="b"

namespace=""

Element
 local-name="i"

namespace=""

Element
 local-name="u"

namespace=""

Element
 local-name="transform"

namespace="http://www.w3.org/1999/XSL/Transform"

Element
 local-name="template"

namespace="http://www.w3.org/

1999/XSL/Transform"

Element
 local-name="value-of"

namespace="http://www.w3.org/1999/XSL/Transform"

Not shown: root, attribute and

namespace nodes

Element
 local-name="output"

namespace="http://www.w3.org/

1999/XSL/Transform"

Literal Result Element

Instruction Element

Page 50 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sequence operator and functions
Chapter 7 - Data type expressions and functions
Section 5 - Sequence expressions

 operator ,
- concatenate two sequences into a new sequence
- sequences are not nested
- e.g. "(1,2,3),(4,5),(1,3) " is "(1,2,3,4,5,1,3) "
- e.g. "(1,2,3),(),(1,3) " is "(1,2,3,1,3) "
- e.g. "(expr1, expr2)[1] " is "if (exists(expr1)) then expr1 else expr2"

- the abbreviated form calculates expr1 only once
- though it is up to the processor to decide if expr2 is or is not evaluated in both

cases
- an optimizing processor may rewrite the expanded form as the abbreviated form

- the effective Boolean value of the sequence is conditional on its content
- an empty sequence returns false
- a singleton sequence returns the effective Boolean value of the singleton
- a sequence beginning with a non-empty node set returns true
- any other sequence of more than one item triggers an error

 empty(required-sequence)

- returns true if the sequence is empty and false if not
- one cannot use boolean() for this because of a singleton sequence evaluating to the

Boolean of the singleton value

 exists(required-sequence)

- returns false if the sequence is empty and true if not
- one cannot use not(boolean()) for this because of a singleton sequence evaluating to

the Boolean of the singleton value
count(required-sequence)

- returns the number of items in the supplied sequence
- all nodes of any node set in the sequence are included in the count

Page 325 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

The node tree constructed using the stylesheet (page 50) on the source (page 48) is:

Element
 local-name="b"

namespace=""

Element
 local-name="i"

namespace=""

Element
 local-name="u"

namespace=""

Text

"
Hello world.
 "

Not shown: root and

namespace nodes

- note from the drawing conventions how the element nodes come from the operation node
tree and the text node is calculated from the source node tree information

Using an MSDOS invocation to execute XSLT with the Saxon processor (with -o for the
output file and -a to respect stylesheet association) we see the following tree serialization:
01 C:\ptux\samp>java -jar ../prog/saxon.jar -o hello.htm -a hello.xml
02

03 C:\ptux\samp>type hello.htm
04 <i><u>Hello world.</u></i>
05 C:\ptux\samp>

The result hello.htm file serialization of the constructed node tree can be viewed with a
browser to see the results using the menu selection View/Source to examine the content:

Page 51 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sequence operator and functions (cont.)
Chapter 7 - Data type expressions and functions
Section 5 - Sequence expressions

Cardinality assertions for static analysis:

 zero-or-one(required-sequence)

- returns the supplied argument if the cardinality of the supplied argument satisfies the
"optional" cardinality

- useful for static checking before execution or runtime checking during execution

 one-or-more(required-sequence)

- returns the supplied argument if the cardinality of the supplied argument satisfies the
"mandatory and repeatable" cardinality

- useful for static checking before execution or runtime checking during execution

 exactly-one(required-sequence)

- returns the supplied argument if the cardinality of the supplied argument satisfies the
"mandatory" cardinality

- useful for static checking before execution or runtime checking during execution

Page 326 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Some simple examples (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 1 - Transform examples

Two ways of working with the Microsoft XSLT processor:

Using the msxml.bat invocation batch file (documented in detail in free download preview
of on-line tutorial material) at an MSDOS command line to execute the MSXML processor:
01 C:\ptux\samp>..\prog\msxml hello.xml hello.xsl hello-ms.htm
02 Invoking MSXML....
03

04 C:\ptux\samp>type hello-ms.htm
05 <i><u>Hello world.</u></i>
06 C:\ptux\samp>

Using IE to directly view the file will show the interpreted result on the browser canvas, in
such a way that the menu function View/Source reveals the untouched XML:

Other browsers support on-the-fly XSLT transformation
- not all browsers have XML processors that support all of the syntax features of XML

- e.g. lack of support for XML entities

Page 52 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sequence operator and functions (cont.)
Chapter 7 - Data type expressions and functions
Section 5 - Sequence expressions

 Sequence type operators (recall slide 74)
- an expression can check the type of a sequence

- 5 instance of xs:integer
- returns true because 5 is an xs:integer value

- 5. instance of xs:integer
- returns false because the value isn't an integer

- (5, 6) instance of xs:integer+
- returns true because the sequence is one or more xs:integer values

- . instance of element()
- returns true if the current node is an element node

- . instance of usa:zipcode
- returns true if the current node is an instance of the user-defined type

"usa:zipcode "
- an expression can check the ability to convert the type of a singleton item

- 5. castable as xs:integer
- returns true because the value could be cast as an integer

- '2007-08-32' castable as xs:date
- returns false

- '2007-08-31' castable as xs:date
- returns true

- $var castable as xs:integer
- returns true if the variable $var can be converted to an integer

- $addr castable as USAddress
- returns true if the variable $addr can be converted to "USAddress "

- an expression can convert the type of a singleton item
- $var cast as xs:integer

- returns the $var variable as an integer value
- $addr cast as USAddress

- returns the $addr variable as having the type "USAddress "
- zip cast as usa:zipcode or usa:zipcode(zip)

- returns the zip child of the current node as having the type "usa:zipcode "
- an expression can assert the type of a singleton item

- $var treat as xs:integer
- only if the variable $var is an instance of the given type, say "xs:integer ",

then the variable's value is returned, otherwise a run-time error is generated
- the value is not cast in order to be returned without error

- a nuance when dealing with qualified names
- 'abc:def' cast as xs:QName

- returns true if the given string has a comparison value in the transform context
- returns false for all variables and other strings

Page 327 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT stylesheet requirements
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

An XSLT stylesheet:
- must identify the namespace prefix with which to recognize the XSLT vocabulary

- a typical namespace declaration attribute declares a particular URI for a given
prefix:

- xmlns: prefix="http://www.w3.org/1999/XSL/Transform"
- as a common practice the prefix "xsl " is used to identify the XSLT

vocabulary, though this is not mandatory
- historically this is because XSLT was first published as one chapter of

the XSL specification
- all of the examples for XSL were written with "xsl: " and remained

after XSLT was spun off as its own specification
- the default namespace should not be used to identify the XSLT vocabulary

- technically possible for elements of the vocabulary, but doing so prevents
XSLT vocabulary attributes to be used wherever possible

- not an issue for small stylesheets, but a maintenance headache if a large
stylesheet needs to begin using XSLT attributes

- extensions beyond the XSLT recommendation are outside the scope of the XSLT
vocabulary so must use another URI for such constructs

- must also indicate the version of XSLT required by the stylesheet
- this dictates the data model rules for building of the source tree based on XPath 1

or XPath 2
- also engages the incompatible version-specific behavior of the processor for certain

instructions
- using "1.0 " for XSLT 2.0 either engages backwards-compatible behavior or

signals an error and does not execute the transformation
- in the start tag of an a element in the XSLT namespace

- version=" version-number"
- attributes not in any namespace that are attached to an element in the XSLT

namespace are regarded as being in the XSLT namespace
- in the start tag of an element not in the XSLT namespace

- prefix:version=" version-number"

Page 53 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sequence operator and functions (cont.)
Chapter 7 - Data type expressions and functions
Section 5 - Sequence expressions

 distinct-values(required-sequence)

 distinct-values(required-sequence, collation)

- returns the members of the sequence with duplicates removed based on the "eq" test
- supplying a collation overrides the default collation for evaluated string values
- all occurrences of NaN are reduced to a single NaN

- even though NaN != NaN

 deep-equal(sequence, sequence)

 deep-equal(sequence, sequence, collation)

- returns true if the two arguments are identical sequences accounting for the member
types and, if nodes, the complete member element structures from each apex to the leaves
of the tree

- supplying a collation overrides the default collation for string values (but not node names)

 index-of(search-sequence, lookup-singleton)

 index-of(search-sequence, lookup-singleton, collation)

- returns a sequence of integers representing the indexes within the search sequence where
the lookup singleton is found

- e.g. index-of((10, 20, 30, 30, 20, 10), 20) returns (2, 5)

Page 328 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT instructions and literal result elements
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

An XSLT instruction:
- is detected in the stylesheet tree only

- not recognized if used in the source tree
- instruction defined by the XSLT recommendation and specified using the prefix

associated with the XSLT URI
- may be a control construct

- the wrapper and top-level elements
- procedural and process-control instructions
- logical and physical stylesheet maintenance facilities

- may be a construction construct
- synthesis of result tree nodes
- copying of nodes from a source node tree

- may be a text value placeholder
- any calculated value using <xsl:value-of> is replaced in situ
- <xsl:value-of select="greeting"/>
- this example instruction calculates the concatenation of all text portions of all

descendents of the first of the selected points in the source tree
- the select= attribute is an expression specifying the point in the source tree or,

more generally, the outcome of an arbitrary expression evaluation which in this
case is a node set

- the value "greeting " indicates the name of a direct element child node of the
current source tree focus, which at the time of execution in this example is the root
of the document (hence <greeting> must be the document element)

- may be a custom extension
- a non-standardized instruction implemented by the XSLT processor
- implements extensibility

- standardized fallback features allow any conforming XSLT processor to still
interpret a stylesheet that is using extensions

- specified using a namespace prefix associated with a URI known to the processor

A literal result element:
- any element not recognized to be an instruction

- used in stylesheet file
- any vocabulary that isn't a declared instruction vocabulary

- represents a result-tree node
- element and its associated attributes are to be added to the result

Page 54 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sequence operator and functions (cont.)
Chapter 7 - Data type expressions and functions
Section 5 - Sequence expressions

 insert-before(first-sequence, integer, second-sequence)

- inserts the second sequence into the first sequence before the member of the first sequence
indicated by the integer

- counting starts at one and numbers below one and above the count of members will insert
the second sequence respectively at the beginning and end of the first sequence

 remove(sequence, integer)

- removes the member of the sequence indicated by the integer

 reverse(sequence)

- returns the members of the input sequence in a sequence in reverse order as input
- e.g. reverse(5 to 7) returns (7, 6, 5)

 subsequence(sequence, start-integer)

 subsequence(sequence, start-integer, count-integer)

- returns the members of the input sequence starting at the second argument for the count
of members indicated in the third argument or to the end of the sequence if the third
argument is absent

 unordered(items)

- returns the members of the input items in an arbitrary order
- if the items are selected by a node set address this might provide an optimization by not

having to order the members addressed in document order

Page 329 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT templates and template rules
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

An XSLT template (a.k.a. "sequence constructor" in XSLT 2.0):
- specifies a fragment for constructing the result tree as a tree of nodes

- see the nodes in Some simple examples (page 50)
- expressed in syntax as a well-formed package of markup

- may or may not include XSLT instructions
01 <i><u><xsl:value-of select="greeting"/></u></i>

- a representation of the desired nodes to add to the result tree
- the XSLT processor recognizes any constructs therein from the XSLT vocabulary as

XSLT instructions and acts on them
- regards all other constructs not from the XSLT vocabulary as literal result elements

that comprise a representation of a tree fragment to add to the result tree

An XSLT template rule:
- a result tree construction rule associated with source tree nodes

- specifies the template to add to the result tree when processing a source tree node
- a "matching pattern" describes the nodes of the source tree
- see Extensible Stylesheet Language Transformations (XSLT) (page 23)

01 <xsl:template match="/">
02 <i><u><xsl:value-of select="greeting"/></u></i>
03 </xsl:template>

- prepares the XSLT processor for building a portion of the result tree whenever the
stylesheet asks the processor to visit the given source tree node

- uses the match= attribute as a "pattern" describing the characteristics of the source tree
node associated with the given template

- the pattern value "/ " indicates the root of the source document (distinct from and
the hierarchical parent of the document element of the source document, therefore,
the very top of the hierarchy)

- a traditional stylesheet must declare all the stylesheet writer's template rules to be used
by the XSLT processor

- a simplified stylesheet defines in its entirety the one and only template rule for the
stylesheet, that being for the root node

XSLT processor first visits the source tree root node:
- the root node template rule begins the construction of the result tree
- all subsequent construction is controlled by the stylesheet

 Can begin processing at a specified named template or mode at invocation
- source tree is optional when starting at an arbitrary rule

Page 55 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sequence operator and functions (cont.)
Chapter 7 - Data type expressions and functions
Section 5 - Sequence expressions

max(required-sequence) and max(required-sequence, collation)

- returns the maximum value found in the sequence
- optionally override the default collation when dealing with strings

min(required-sequence) and min(required-sequence, collation)

- returns the minimum value found in the sequence
- optionally override the default collation when dealing with strings

 avg(required-sequence)

- returns the average of values (sum divided by count)
sum(required-sequence)

- converts each node to a string before converting to a number
- calculates and returns the sum of each of the number values
- returns an integer zero for the empty sequence of values

For arithmetic on sets use a predicate to ensure all of the values addressed are suitable:
- need a predicate that is true for numbers but false for NaN
- e.g. sum(path[number()=number()])

- this relies on a comparison operator returning false when NaN is used
- e.g. sum(path[. castable as xs:double])

- this relies on string values being implicitly cast to xs:double
- e.g. sum(path[. castable as xs:dayTimeDuration]/ xs:dayTimeDuration(.))

- this avoids the implicit cast to xs:double by explicitly casting to
xs:dayTimeDuration

- note that when the node set summed is empty, this still returns the xs:double
value of 0, not an xs:dayTimeDuration value

 sum(required-sequence, empty-sequence-zero-value)

- same as sum() but when the required sequence in the first argument has no items or
nodes then the second argument is returned as the zero value

- important when the required return value type cannot be inferred from an integer zero,
e.g. in the following the variable's type constraint requires sum() to return a value of
type xs:daytimeDuration when there are no nodes being summed:

- 01 <xsl:variable name="waitTime" as="xs:dayTimeDuration"
02 select="sum($nodes[. castable as xs:dayTimeDuration]/
03 xs:dayTimeDuration(.), xs:dayTimeDuration('PT0S'))"/>

Page 330 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT stylesheet components
Chapter 2 - Getting started with XSLT and XPath
Section 2 - Syntax basics

A "simplified" XSLT stylesheet:
- can be declared inside an arbitrary XML document (e.g. an XHTML document) by using

namespace declarations for XSLT constructs found within
- the entire stylesheet file is a template for the entire result tree

- regarded as the template rule for the root node
- identifiable components of this implicitly declared XSLT script:

<?xml version="1.0"?>

<html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xsl:version="1.0">

 <head><title>Greeting</title></head>

 <body><p>Words of greeting:

 <i><u><xsl:value-of select="greeting"/></u></i>

 </p></body>

</html>
 Literal Result Elements

XML Declaration

XSLT Namespace Declaration

Result Tree

Template

Version of XSLT required

by the Stylesheet

XSLT Instruction

A more traditional stylesheet:
- can be written as an entire XML document (or embedded fragment in an XML document)

by using a stylesheet document element as the explicit container
- traditional stylesheets can be utilized by other explicitly declared stylesheets
- identifiable components of this traditional XSLT script:

<?xml version="1.0"?>

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

 <i><u><xsl:value-of select="greeting"/></u></i>

</xsl:template>

</xsl:transform>

XSLT Instruction

Result Tree

Template

XSLT Namespace Declaration

Template

Rule

Document

Element

Top-level

Elements

XML Declaration

Version of XSLT

required by the

Stylesheet

Literal Result Elements

Page 56 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using Boolean functions
Chapter 7 - Data type expressions and functions
Section 6 - Boolean expressions

Boolean operators and functions:
- the comparison space is only true and false
- the lexical space is only "1" and "true " for true and "0" and "false " for false

boolean(required-expression)

- converts the essence of the argument to a Boolean value
- converts an empty string to false and all other strings to true
- converts NaN and positive and negative 0 to false and all other values to true

- NaN is not equal to anything (including itself), so to test that a value is NaN:
- test="not(number($num) = number($num))"

- converts an empty node list to false and all other node lists to true
- converts an empty sequence to false , a singleton sequence according to the singleton's

data type, and longer sequences trigger a runtime error
- converts any result-tree fragment or temporary tree to true because of the document

node
- different than the casting to the data type using xs:boolean(expression)

- the expression for casting must be in the lexical space

true() and false()

- return the values true and false

not(expression)

- returns the opposite after converting the expression using boolean()

lang(expression)

lang(expression, node)

- supports XML 1.0 Section 2.12 Language Identification
- xml:lang=" primary" or xml:lang=" primary- sub"

- e.g. lang="en" , lang="en-US" , lang="en-cockney"
- governed by IETF Request For Comment 3066 (making RFC 1766 obsolete)
- one primary component and any number (including zero) subcomponents

- subcomponents are only administrative
- returns true if an ancestral element to the supplied node (or context node if a second

argument is not supplied) has an attribute named "xml:lang " whose value, or whose
initial portion up to the first embedded "-", is equal to the case-insensitive expression

- returns false if no such ancestral attribute is found

Page 331 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Pull and push constructs
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Consider for illustration an XML file containing sale and purchase information maintained
chronologically, thus in an arbitrary order:
<chrono-info>
 <purchase>...</purchase>
 <sale>...</sale>
 <sale>...</sale>
 <purchase>...</purchase>
 <sale>...</sale>
 <purchase>...</purchase>
</chrono-info>

How one approaches accessing the information to create the result tree varies
- one can pull the information out of the source node tree
- one can push the information from the source node tree at the stylesheet

Page 57 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using Boolean functions (cont.)
Chapter 7 - Data type expressions and functions
Section 6 - Boolean expressions

operators or and and

- returns traditional results of Boolean logic
- when evaluating the or operator, evaluation terminates at the first operand evaluating

to true
- note that the "| " operator is the union operator and not the logical or as is popular

in many programming languages
- when evaluating the and operator, evaluation terminates at the first operand evaluating

to false

grouping (and)
- performs the traditional grouping to override precedence

 operators "<<", "is " and ">>" (not including the quotes):
- referred to as "node comparisons"
- tests on singleton node operands being in document order
- returns respectively whether the left-hand operand is before the right-hand operand in

document order, is the same node as the right-hand operator, or is after the right-hand
operator in document order

- the "<" must always be escaped (e.g. using "< ")

 operators "eq", "ne", "gt ", "lt ", "le " and "ge" (not including the quotes):
- referred to as "value comparisons"
- returns true or false on the comparison of singleton operand values

operators "<", ">", "<=", ">=", "=" and "!= " (not including the quotes):
- the "<" must always be escaped (e.g. using "< ")
- referred to as "general comparisons"
- if "<" or ">" used in the operator, both operands converted using number()
- returns true or false on the comparison of arbitrary operand values

- each operand may be a singleton or a sequence or a node set
- two Boolean operands

- considered equal if their respective values are equal
- two number operands

- considered equal if their respective values are equal
- two string operands

- considered equal if their Unicode characters are identical
- the full form and composed form of a given character are not identical

- considered equal by the default collation determination in play
- two singleton operands

- convert unlike operands to like objects before performing the comparison
- uses boolean() if either is Boolean, otherwise uses number()

Page 332 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Pulling the input data and repositioning in the tree
- the hierarchy of the source file is known by the transform writer
- at the point of building "the next" part of the result tree

The transform "pulls" information as and when needed:
- from known locations in the source node tree
- for extraction or calculation using the lexical value

- <xsl:value-of select="string(XPath-expression)"/>
- for extraction or calculation using the schema-qualified value

- <xsl:value-of select=" XPath-expression"/>
- for wholesale copying of source tree nodes

- <xsl:copy-of select=" XPath-expression"/>
- for repositioning over a sequence of arbitrary locations or values of any data type

- <xsl:for-each select=" XPath-node-set-expression">
...template...

</xsl:for-each>
- <xsl:for-each select=" XPath-sequence-expression">

...template...
 </xsl:for-each>

Transform-determined result order implements direct document construction
- the result tree is built by the transform obtaining each result component from the source,

in result order, and framing each component as required with literal markup from the
transform

- if the result can be described as a single template using only the "pull" instructions, the
transform can be simply declared as a single result template

Page 58 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using Boolean functions (cont.)
Chapter 7 - Data type expressions and functions
Section 6 - Boolean expressions

operators "<", ">", "<=", ">=", "=" and "!= " (not including the quotes) (cont.):
- one or two node-set or sequence operands

- the result of the comparison is initialized to false before beginning the comparison
- false is returned when either operand is empty

- "a != b " and "not(a = b) " and "a ne b " are all different
- "a != b " will return false if either operand does not exist
- "not(a = b) " will return true if either operand does not exist
- "a ne b " will trigger an error if either operand does not exist
- all three expressions return the same when both operands exist as singletons

- deal with values of each individual member of the node set until true
- the operators performed on two node sets will consider the number values (if

greater-than or less-than is used in the operator) or the string values of the members
of the node sets and consider the operation true if the value of any member of one
node set compares as desired to the value of any member of the other node set and
false if no member of one set compares as desired to all values of the other set

- the operators performed on a node set and a singleton argument convert the node
set member values to like objects (the precedence being number if greater-than or
less-than is used in the operator, then Boolean if the singleton argument is a Boolean,
then number if it is a number, otherwise string) before performing the comparisons
and consider the operation true if the value of any member of the node set compares
as desired to the value of the other argument

- note that this means that the Boolean not() function applied to a node set
comparison will return true if all members of the set fail the comparison

- does not test for two nodes as being the same node
- because comparisons are based on the value of the node not the identity of

the node
- test='switch/@state="on"'

- true if any of the children "switch " have the attribute equal to "on"
- the test checks each of the nodes until the first true comparison and only returns

false if all nodes test false
- test="some $s in switch/@state satisfies $s eq 'on'"

- test='not(switch/@state!="on")'
- true if all of the children "switch " have the attribute equal to "on"
- the inner test checks each of the nodes and only returns false if all nodes test

false (that is that they all have the value "on")
- the outer evaluation changes the inner evaluation from false to true
- test="every $s in switch/@state satisfies $s eq 'on'"

Page 333 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Pull example
- to process all of the sales records together, followed by all of the purchase records

together, they are pulled from the source tree one set before the others:
- <xsl:template match="chrono-info">

 <sale-purchase-summary>
 <xsl:for-each select="sale">

...template for the sale...
 </xsl:for-each>
 <xsl:for-each select="purchase">

...template for the purchase...
 </xsl:for-each>
 </sale-purchase-summary>
</xsl:template>

- each address "sale " and "purchase " will respectively find all <sale> and <purchase>
child elements of <chrono-info>

- the order of the two instructions will construct the result tree by adding one template for
each of the sale elements until all sale elements have been addressed, followed then by
adding one template for each of the purchase elements until all purchase elements have
been addressed:

- <sale-purchase-summary>
...result construction for sale...
...result construction for sale...
...result construction for sale...
...result construction for purchase...
...result construction for purchase...
...result construction for purchase...

</sale-purchase-summary>

Recall the input elements shown on page 57

Page 59 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using Boolean functions (cont.)
Chapter 7 - Data type expressions and functions
Section 6 - Boolean expressions

 Convenience in XPath 2 for multiple "or " comparisons:
- creating a sequence of comparison values and using the symbolic comparison operators

will require the processor to walk all of the members of the sequence until one of them
compares as "true "

- when all of the members are compared without a "true " response then the expression
returns "false "

01 question[@response=('y', 'Y', 'n', 'N')]

- the above expression in XPath 1.0 would require a four-operand "or " expression
01 ulink[lower-case(substring-before(normalize-space(@url),':'))=
02 ('ftp', 'http', 'https', 'mailto')]

- the above template match for a DocBook construct in XPath 1.0 would also require a
four-operand "or " expression with multiple invocations of the function calls

Page 334 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Pushing the input data and repositioning in the tree
- arbitrary or unexpected source structure

- the structure of the source file is not in either an expected or explicit order
- source file order must be accommodated by transformation

- to process all of the records in the order they appear in the document, they are pushed
through the transform logic while specifying the union of all such nodes

XSLT stylesheets:
- the stylesheet "pushes" nodes of information at the template rules:

- visits known (using names) or unknown (using a wild card) source tree nodes
- <xsl:apply-templates select=" XPath-node-expression">

- template rules respond to node visitations by constructing the result tree:
- <xsl:template match=" XPath-pattern">

Source-determined result order implements indirect tree construction
- the <xsl:apply-templates> instruction is the event generators

- selects the source information the processor is to visit
- the <xsl:template> template rule is the event handler

- the type of event described as a qualification of the source information in the match=
attribute

Note it is not necessary to exclusively use one approach or the other
- transforms alternately push some of the input data through the processor (data driven)

and pull the same or other input data where required (transform driven)
- the pulling of data that is relative to the data being pushed can be done in the template

catching the data being pushed

Page 60 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Calculating values using Boolean functions (cont.)
Chapter 7 - Data type expressions and functions
Section 6 - Boolean expressions

 XPath 2.0 standalone quantified expressions
- an expression returning a Boolean true or false based on the presence of one true

value or all true values in a set of comparisons
- the tuple can have as many members as is needed to write the comparison
- the following returns true

- some $x in (1, 2, 3), $y in (4, 5) satisfies $x + $y eq 6
- the following returns false

- every $x in (1, 2, 3), $y in (4, 5) satisfies $x + $y eq 6

Page 335 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Pull and push constructs (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 3 - Approaches to transform design

Push example
- using XSLT:

- <xsl:template match="chrono-info">
 <sale-purchase-summary>
 <xsl:apply-templates select="sale | purchase"/>
 </sale-purchase-summary>
<xsl:template>

- where each construct being pushed must somehow be handled by the stylesheet:
- <xsl:template match="sale"> ...template...</xsl:template>

<xsl:template match="purchase"> ...template...</xsl:template>
- each address "sale " and "purchase " will respectively find all <sale> and all

<purchase> elements in the source tree, but the union operator "| " will return the set
of all those nodes in document order which may very well be interleaved

- the order of the two result expressions is irrelevant because each result expression will
be triggered only by the kind of node being matched

- this will construct the result tree by adding one template for each of the sale elements
and purchase elements in the document order encountered in the source tree:

- <sale-purchase-summary>
...result construction for purchase...
...result construction for sale...
...result construction for sale...
...result construction for purchase...
...result construction for sale...
...result construction for purchase...

</sale-purchase-summary>

Recall the input elements shown on page 57

Contrast the result with that of the pull approach on page 59

Page 61 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Qualified-name functions
Chapter 7 - Data type expressions and functions
Section 7 - Miscellaneous expressions

Recall various functions that return node name information as strings:
- see page 308 for string-based name functions
- recall page 30 with terminology

QName values have different lexical and comparison spaces
- the lexical value is either a prefixed name or an un-prefixed qualified name used for

reference and for exposition
- the comparison value is the expanded name
- the namespace name for un-prefixed attributes is the empty string
- the namespace name for un-prefixed elements is the default namespace URI

QName(string-uri, string-qname)

- returns the qualified name value using the second argument with the URI of the supplied
prefix (or default namespace if not present) being the first argument

Dealing with both the namespace name (URI) and local name as a unit value
- e.g. count(ancestor::*[node-name(.)=QName('urn:X-p','a')])
- count the ancestor elements named "a" in the "urn:X-p " namespace
- no heed of or hindrance from choices of prefixed or non-prefixed names

prefix-from-QName(qname)

- returns the non-colon prefix string of the interpretation of the supplied qualified name
value

local-name-from-QName(qname)

- returns the non-colon local name string of the interpretation of the supplied qualified
name value

namespace-uri-from-QName(qname)

- returns the URI value of the interpretation of the supplied qualified name value

resolve-QName(string-qname, element-node)

- returns the qualified name value of the interpretation of the supplied string as a qualified
name in the context of the supplied element node

Tip:
- sometimes it is necessary to construct a qualified name ignoring the default namespace

- cannot just use resolve-QName() because it respects the default namespace
- if (contains($qname, ":"))

 then resolve-QName($qname, $element)
 else QName("", $qname)

- when there is a prefix present, determine the name in the context of an element
- otherwise, ignore the default namespace and construct a name using no namespace

Page 336 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

Consider the data file prod.xml containing some sales data information:
01 <?xml version="1.0"?><!--prod.xml-->
02 <!DOCTYPE sales [
03 <!ELEMENT sales (products, record)> <!--sales information-->
04 <!ELEMENT products (product+)> <!--product record-->
05 <!ELEMENT product (#PCDATA)> <!--product information-->
06 <!ATTLIST product id ID #REQUIRED>
07 <!ELEMENT record (cust+)> <!--sales record-->
08 <!ELEMENT cust (prodsale+)> <!--customer sales record-->
09 <!ATTLIST cust num CDATA #REQUIRED> <!--customer number-->
10 <!ELEMENT prodsale (#PCDATA)> <!--product sale record-->
11 <!ATTLIST prodsale idref IDREF #REQUIRED>
12]>
13 <sales>
14 <products><product id="p1">Packing Boxes</product>
15 <product id="p2">Packing Tape</product></products>
16 <record><cust num="C1001">
17 <prodsale idref="p1">100</prodsale>
18 <prodsale idref="p2">200</prodsale></cust>
19 <cust num="C1002">
20 <prodsale idref="p2">50</prodsale></cust>
21 <cust num="C1003">
22 <prodsale idref="p1">75</prodsale>
23 <prodsale idref="p2">15</prodsale></cust></record>
24 </sales>

Of note:
- each product is identified with id= declared to be of type ID

- permits the element to be addressed with a unique identifier
- there is no total information, only information about each product sale
- the product names are not duplicated

- the product information is referenced using idref= from the product sale

Page 62 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Qualified-name functions (cont.)
Chapter 7 - Data type expressions and functions
Section 7 - Miscellaneous expressions

in-scope-prefixes(element-node)

- returns a sequence of strings reflecting the prefixes of all of the in-scope namespaces for
the given element

namespace-uri-for-prefix(prefix-string, element-node)

- returns the URI (not a string) of the interpretation of the supplied qualified name (not a
string)

Tip:
- when the namespace axis is unavailable, these functions can be used

- e.g. name(namespace::*[.=$nsuri])
- replaced with:
- in-scope-prefixes($node)

[namespace-uri-for-prefix(.,$node)=$nsuri]

Page 337 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The equivalent set of document constraints on the logical hierarchy expressed using W3C
Schema could be in prod.xsd :
01 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
02 <xsd:element name="sales">
03 <xsd:complexType>
04 <xsd:sequence>
05 <xsd:element name="products">
06 <xsd:complexType>
07 <xsd:sequence>
08 <xsd:element name="product" maxOccurs="unbounded">
09 <xsd:complexType mixed="true">
10 <xsd:attribute name="id" type="xsd:ID"/>
11 </xsd:complexType>
12 </xsd:element>
13 </xsd:sequence>
14 </xsd:complexType>
15 </xsd:element>
16 <xsd:element name="record">
17 <xsd:complexType>
18 <xsd:sequence>
19 <xsd:element name="cust" maxOccurs="unbounded">
20 <xsd:complexType>
21 <xsd:sequence>
22 <xsd:element name="prodsale" maxOccurs="unbounded">
23 <xsd:complexType>
24 <xsd:simpleContent>
25 <xsd:extension base="xsd:integer">
26 <xsd:attribute name="idref" type="xsd:IDREF"/>
27 </xsd:extension>
28 </xsd:simpleContent>
29 </xsd:complexType>
30 </xsd:element>
31 </xsd:sequence>
32 <xsd:attribute name="num" type="xsd:string"/>
33 </xsd:complexType>
34 </xsd:element>
35 </xsd:sequence>
36 </xsd:complexType>
37 </xsd:element>
38 </xsd:sequence>
39 </xsd:complexType>
40 </xsd:element>
41 </xsd:schema>

- note the declaration of prodsale is an integer value
- note the ID/IDREF relationships expressed between id= and idref=

Page 63 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

URI functions
Chapter 7 - Data type expressions and functions
Section 7 - Miscellaneous expressions

resolve-uri(abs-or-relative-new-uri, abs-or-relative-base-uri)

- returns the URI of the first argument string interpreted as an absolute or relative URI
against the second string interpreted as the base URI (absolute or relative)

- note the return is a URI and not a string
- if both URI strings are relative, then the return URI is relative
- e.g. resolve-uri('abc.xml','def/ghi/jkl.xml')

- returns the relative URI "def/ghi/abc.xml "
- e.g. resolve-uri('abc.xml',base-uri(.))

- returns the absolute URI of "abc.xml " using in the same directory as that for the
fragment from which the current source tree node was obtained

encode-for-uri(string)

- returns the argument string encoded according to the rules of RFC 3986
- http://www.ietf.org/rfc/rfc3986.txt
- characters other than A-Z, 0-9, "-", "_", "." and "~" are encoded using UTF-8 and

then escaped with "%"
- e.g. encode-for-uri("http://www.example.com/~bébé")

returns "http%3A%2F%2Fwww.example.com%2F~b%C3%A9b%C3%A9"
- the entire string is processed, so it only practical to work on only portions of an address
- e.g. concat("http://www.example.com/", encode-for-uri("50% off"))

returns "http://www.example.com/50%25%20off "

iri-to-uri(string)

- returns the argument string encoded according to the rules of RFC 3987
- http://www.ietf.org/rfc/rfc3987.txt
- converts non-URI characters to escaped UTF-8 sequences

- e.g. iri-to-uri("http://www.example.com/50% off - bébé")
returns "http://www.example.com/50%%20off%20-%20b%C3%A9b%C3%A9 "

escape-html-uri(string)

- returns the argument string escaped for all non-ASCII characters
- converts to escaped UTF-8 sequences

- e.g. escape-html-uri("http://www.example.com/50% off - bébé")
returns "http://www.example.com/50% off - b%C3%A9b%C3%A9 "

Page 338 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The hint that a particular W3C Schema applies to a document is given via reserved attributes
- a processor is not obliged to use the hints

The following document has a self-referential consistency error that will not be detected unless
schema validation is turned on:

- note how customer C1003 has a product sale pointing to a non-existent product

In addition, the ID/IDREF relationships are not recognized unless schema validation is turned
on:

- any built-in facilities for supporting ID-typed attributes are not engaged
01 <?xml version="1.0"?><!--prod-bad.xml-->
02 <sales xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
03 xsi:noNamespaceSchemaLocation="prod.xsd">
04 <products><product id="p1">Packing Boxes</product>
05 <product id="p2">Packing Tape</product></products>
06 <record><cust num="C1001">
07 <prodsale idref="p1">100</prodsale>
08 <prodsale idref="p2">200</prodsale></cust>
09 <cust num="C1002">
10 <prodsale idref="p2">50</prodsale></cust>
11 <cust num="C1003">
12 <prodsale idref="p1">75</prodsale>
13 <prodsale idref="p3">15</prodsale></cust></record>
14 </sales>

Page 64 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Date and time functions and operators
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

 Comparison values for different date and time types defined in the data model
- http://www.w3.org/TR/xpath-datamodel/#dates-and-times
- data types defined in detail in the W3C Schema specification

- http://www.w3.org/TR/xmlschema-2/#isoformats
- XPath 2.0 introduces two subtypes of duration not included in W3C Schema

- see Data types (page 73)

Date and time lexical values
- "- yyyy- mm- ddThh: mm: ss" (BCE)
- "yyyy- mm- ddThh: mm: ss" (CE)
- "yyyy- mm- ddThh: mm: ss.ssss±hh:mm"
- "yyyy- mm- ddThh: mm: ss.ssssZ" (UTC)
- either the date or the time or both can be specified

- 'T' is only used when both are specified
- no limit to the fractional seconds
- 'Z' must be presented in a value with a time zone difference from UTC
- example values:

- "17:23 " represents 5:23pm in the implicit time zone
- "17:23-04:00 " represents 5:23pm in Eastern Daylight Savings (EDT) time
- "2007-08-17-04:00 " represents August 17, 2007 EDT
- "2001-01-01T00:00:00+00:00 " represents midnight at the start of the millennium

Cast strings to date/time using the primitive types:
- xs:dateTime('2007-08-17T21:43:00')
- xs:date('2007-08-17')
- xs:time('21:43:00')

Page 339 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

Recall the sample data on page 62
- very dissimilar reports could be generated for the one data file by using different

transforms:

Of note:
- items are rearranged from one authored order to two different presentation orders
- transformation includes calculation of sum of marked up values

Page 65 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Date and time functions and operators (cont.)
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

Duration lexical values
- "PnYnMnDTnHnMnS"
- "PnYnMnDTnHnMn.nnnS"
- the "P" is required (historically referred to as "period")
- any component may be absent provided not all components are absent

- a component's letter must be accompanied by its number value
- the "T" is only used when there are both date and time components
- n may be the value zero
- XPath 2.0 xs:yearMonthDuration

- "PnYnM"
- stored month value is limited to between 0 and 11
- specified values for casting can be any number

- XPath 2.0 xs:dayTimeDuration
- "PnDTnHnMn.nnnS"
- stored hour, minute and second values are limited not to be larger than the next

unit of measure
- specified values for casting can be any number

- example values:
- "P0M" represents zero months (canonical zero xs:yearMonthDuration)

- if all of the components are zero
- "PT0S" represents zero seconds (canonical zero xs:dayTimeDuration)

- if all of the components are zero
- "PT47H" represents 47 hours
- "P1DT1M" represents one day and 1 minute

Cast strings to date/time using the type name as a function or using the operator:
- xs:duration('P1Y3D')
- xs:yearMonthDuration('P1Y2M')
- 'P3DT10H20S' cast as xs:dayTimeDuration

Arithmetic only allowed for derived XPath durations, not XSD durations
- xs:duration is defined by XSD
- xs:yearMonthDuration and xs:dayTimeDuration are derived in XPath from

xs:duration in XSD

operator - on dates and times returns derived durations

operators - and + on dates and times with derived durations returns dates and times

operators * and div on derived durations with scalars returns derived durations

operator div on two derived durations returns a scalar

Page 340 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

Recall the sample data on page 62
- any result vocabulary can be used; for example, WML rendered on a mobile device:

Page 66 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Date and time functions and operators (cont.)
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

current-dateTime()

- returns the dateTime expression of the current date and time
- for the duration of executing the transform this returns a stable single value

current-date()

- returns the date expression of the current date
- for the duration of executing the transform this returns a stable single value

current-time()

- returns the time expression of the current time
- for the duration of executing the transform this returns a stable single value

implicit-timezone()

- returns the dayTimeDuration expression of the implicit time zone
- e.g. Eastern Daylight Savings Time returns "-PT4H"

dateTime(date?, time?)

- returns the dateTime expression of the date and time
- either one may be the empty sequence, in which case the return is the empty sequence

adjust-dateTime-to-timezone(dateTime, optional-tz-dayTimeDuration)

- omitting the time zone value returns the dateTime in the implicit time zone
- an empty sequence time zone value returns the dateTime without a time zone
- a time zone value returns the dateTime in the time zone

adjust-date-to-timezone(date, optional-tz-dayTimeDuration)

- assumes the time is 00:00:00 for calculations
- omitting the time zone value returns the date in the implicit time zone
- an empty sequence time zone value returns the date without a time zone
- a time zone value returns the date in the time zone

adjust-time-to-timezone(time, optional-tz-dayTimeDuration)

- omitting the time zone value returns the time in the implicit time zone
- an empty sequence time zone value returns the time without a time zone
- a time zone value returns the time in the time zone

Page 341 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The simplified stylesheet prod-pull.xsl for the table (page 65) for the XML (page 62):
01 <?xml version="1.0"?><!--prod-pull.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 xsl:version="1.0">
05 <head><title>Product Sales Summary</title></head>
06 <body><h2>Product Sales Summary</h2>
07 <table summary="Product Sales Summary" border="1">
08 <!--list products-->
09 <tr align="center"><th/>
10 <xsl:for-each select="//product">
11 <th><xsl:value-of select="."/></th>
12 </xsl:for-each></tr>
13 <!--list customers-->
14 <xsl:for-each select="/sales/record/cust">
15 <xsl:variable name="customer" select="."/>
16 <tr align="right">
17 <td><xsl:value-of select="@num"/></td>
18 <xsl:for-each select="//product"> <!--each product-->
19 <td><xsl:value-of select="$customer/prodsale
20 [@idref=current()/@id]"/>
21 </td></xsl:for-each>
22 </tr></xsl:for-each>
23 <!--summarize-->
24 <tr align="right"><td>Totals:</td>
25 <xsl:for-each select="//product">
26 <xsl:variable name="pid" select="@id"/>
27 <td><i><xsl:value-of
28 select="sum(//prodsale[@idref=$pid])"/></i>
29 </td></xsl:for-each></tr>
30 </table>
31 </body></html>

Information added from the stylesheet and pulled from the source document:
- the header and body title are hardwired content from stylesheet
- the table's header row comes from each product name in source
- the customer information is visited to produce rows (note use of variable)

- sale information produces columns
- total information is generated by stylesheet using sum() built-in function (no custom

node-traversal programming needed)

Page 67 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Date and time functions and operators (cont.)
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

year-from-dateTime(dateTime)

- returns the integer year from the date and time

month-from-dateTime(dateTime)

- returns the integer month from the date and time

day-from-dateTime(dateTime)

- returns the integer day from the date and time

hours-from-dateTime(dateTime)

- returns the integer hours from the date and time

minutes-from-dateTime(dateTime)

- returns the integer minutes from the date and time

seconds-from-dateTime(dateTime)

- returns the integer seconds from the date and time

timezone-from-dateTime(dateTime)

- returns the duration of the time zone from the date and time

Page 342 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The traditional stylesheet prod-push.xsl for the list (page 65) for the XML (page 62):
01 <?xml version="1.0"?><!--prod-push.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:template match="record"> <!--processing for each record-->
07 <xsl:apply-templates/></xsl:template>
08

09 <xsl:template match="prodsale"> <!--processing for each sale-->
10 <xsl:value-of select="../@num"/> <!--use parent's attr-->
11 <xsl:text> - </xsl:text>
12 <xsl:value-of select="id(@idref)"/> <!--go indirect-->
13 <xsl:text> - </xsl:text>
14 <xsl:value-of select="."/></xsl:template>
15

16 <xsl:template match="/"> <!--root rule-->
17 <html><head><title>Record of Sales</title></head>
18 <body><h2>Record of Sales</h2>
19 <xsl:apply-templates select="/sales/record"/>
20 </body></html></xsl:template>
21

22 </xsl:stylesheet>

Source document is pushed through the stylesheet:
- the order of the template rules is irrelevant

- only one node is being pushed at the stylesheet, so only one template responds
- the header and body title are hardwired content from stylesheet
- the root rule pushes all sales records through the stylesheet
- each record produces the unordered list wrapper for list items and pushes child

elements through the stylesheet
- each child element pushed through produces a list item that pulls information from the

parent and from an arbitrary place of the source

An importing stylesheet can exploit the template rule fragmentation
- another stylesheet can import this stylesheet and specialize the behavior of any top-level

construct
- an overriding definition of any template rule will take precedence over that rule in the

above transformation

Page 68 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Date and time functions and operators (cont.)
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

year-from-date(date)

- returns the integer year from the date

month-from-date(date)

- returns the integer month from the date

day-from-date(date)

- returns the integer day from the date

timezone-from-date(date)

- returns the duration of the time zone from the date

hours-from-time(time)

- returns the integer hours from the time

minutes-from-time(time)

- returns the integer minutes from the time

seconds-from-time(time)

- returns the integer seconds from the time

timezone-from-time(time)

- returns the duration of the time zone date and time

Page 343 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing XML with many transforms (cont.)
Chapter 2 - Getting started with XSLT and XPath
Section 4 - More transform examples

The traditional stylesheet prod-wml.xsl for the WML (page 66) and XML (page 62):
01 <?xml version="1.0"?><!--prod-wml.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet version="1.0"
04 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
05 <xsl:output doctype-system="http://CRANE/wml13.dtd"/>
06

07 <xsl:template match="/"> <!--root rule-->
08 <wml><card title="Record of Sales"> <!--index card-->
09 <p>Record of Sales</p>
10 <p><select name="cards">
11 <xsl:apply-templates mode="head"
12 select="/sales/record/cust"/>
13 </select></p></card>
14 <xsl:apply-templates select="/sales/record/cust"/>
15 </wml></xsl:template>
16

17 <xsl:template match="cust" mode="head"><!--index entry-->
18 <option onpick="#{@num}">
19 <xsl:text/>Customer <xsl:value-of select="@num"/>
20 </option></xsl:template>
21

22 <xsl:template match="cust"><!--customer's card in deck-->
23 <card id="{@num}" title="Customer {@num}">
24 <p><xsl:value-of select="@num"/></p>
25 <p>Items: <xsl:value-of select="count(prodsale)"/></p>
26 <p>Total: <xsl:value-of select="sum(prodsale)"/></p>
27 <xsl:apply-templates/></card></xsl:template>
28

29 <xsl:template match="prodsale"><!--proc for each sale-->
30 <p><xsl:value-of select="id(@idref)"/> <!--indirect-->
31 <xsl:text> - </xsl:text>
32 <xsl:value-of select="."/></p></xsl:template>
33

34 </xsl:stylesheet>

Source document is pushed through the stylesheet:
- the same source is visited twice using different template rules for processing to produce

different results

An importing stylesheet can exploit the template rule fragmentation
- another stylesheet can import this stylesheet and specialize the behavior of any top-level

construct
- an overriding definition of any template rule will take precedence over that rule in the

above transformation

Page 69 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Date and time functions and operators (cont.)
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

years-from-duration(duration)

- returns the integer year from the duration

months-from-duration(duration)

- returns the integer month from the duration

days-from-duration(duration)

- returns the integer day from the duration

hours-from-duration(duration)

- returns the integer hours from the duration

minutes-from-duration(duration)

- returns the integer minutes from the duration

seconds-from-duration(duration)

- returns the integer seconds from the duration

Important nuances regarding durations
- extracting a component extracts only the component

- e.g. "seconds-from-duration(xs:duration('PT2H3S')) " returns 3
- arithmetic only allowed on duration subtypes

- e.g. "xs:dayTimeDuration('PT2H3S') div xs:dayTimeDuration('PT1S') "
returns 7203

- e.g. "xs:duration('PT2H3S') div xs:duration('PT1S') " returns an error
- see page 73 for subtypes

Obtaining only the fractional part of seconds
- recall that the mod operator gives the remainder after whole division
- seconds-from-time(current-time()) mod 1

Page 344 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 3 - XPath data model

- Introduction - The need for abstractions
- Section 1 - XPath data model components
- Section 2 - XPath expressions

Page 70 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting date and time strings
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

format-dateTime(dateTime, pattern)

format-dateTime(dateTime, pattern, language, calendar, country)

format-date(date, pattern)

format-date(date, pattern, language, calendar, country)

format-time(time, pattern)

format-time(time, pattern, language, calendar, country)

- returns the string representation of the given time, formatted according to the given
picture string

- e.g. format-date($d,"[Y0001]-[M01]-[D01]") returns 2007-08-26
- e.g. format-date($d,"[Y]-[M]-[D]") returns 2007-8-26
- e.g. format-date($d, "[D01] [MN,*-3] [Y0001]", "en", (), ()) returns 26

AUG 2007
- e.g. returning 2007-08-26 14:05z

- format-dateTime(
 adjust-dateTime-to-timezone(current-dateTime(),
 xsd:dayTimeDuration('PT0H')),
 '[Y0001]-[M01]-[D01] [H01]:[m01]z')

- the current time is converted to Coordinated Universal Time/Temps Universel
Coordonné (UTC) before formatting

- time zone "00:00"
- also called "Zulu time"

- the language , calendar and country arguments available are implementation-defined
- defaults are also implementation-defined
- impacts on words used for names (e.g. months, days of the week)
- impacts on the ordinals (e.g. 20th)
- impacts on the convention for expressing hours
- impacts on the first day of the week and first day of the year

Full specification of features in the XSLT 2.0 recommendation:
- http://www.w3.org/TR/xslt20/#format-date

Page 345 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The need for abstractions
Chapter 3 - XPath data model

Dealing with information, not markup
- all input and output information manipulated in an abstract fashion
- separate node structures of information:

- source trees (example on page 48)
- the main source tree is optional in XSLT 2
- the main source tree is required in XSLT 1
- multiple additional source documents may be read as separate node structures

- operation tree (stylesheet example on page 50)
- result tree (example on page 51)

- multiple result trees can be created using XSLT 2
- knowledge of input markup and control of output markup out of the hands of the transform

writer
- the writer deals with nodes of information, not characters of markup

Traversing a source document or transform document predictably
- XML syntax processed into an abstract data model tree of nodes

- documents are described according to a data model for the XML markup
- interpreted in terms of the XML Information Set

- http://www.w3.org/TR/xml-infoset/
- maintained in terms of a formal XPath data model

- http://www.w3.org/TR/xpath-datamodel/
- all nodes created are typed, and have a value that can be used as a string of text
- some nodes have an associated name, while other nodes are unnamed
- some nodes have types based on W3C Schema post-schema validation infoset

- http://www.w3.org/TR/xmlschema-1/#d0e504
- the processor performs all operations using the node tree, not the document directly

- the actual markup used in input instances is not preserved
- there are no constraints or requirements of the XML source in that any

well-formed markup chosen by the author of an XML document is represented
abstractly in the tree

- XPath node tree navigation
- the transform can navigate around the source node tree in many directions
- thirteen axes of direction that can be traversed relative to the context (current) node
- the transform is responsible for specifying which source nodes get processed when

and how

The XPath data model and the DOM data model are different
- the Document Object Model (DOM) is a data model of the information including the

syntax in an XML document
- XPath is a data model of the information not including the syntax in an XML document

Page 71 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting date and time strings (cont.)
Chapter 7 - Data type expressions and functions
Section 8 - Date and time expressions

Quick reference to pattern strings:
year (absolute value)Y
month in yearM
day in monthD
day in yeard
day of weekF
week in yearW
week in monthw
hour in day (24 hours)H
hour in half-day (12 hours)h
am/pm markerP
minute in hourm
second in minutes
fractional secondsf
time zone as a time offset from UTC, or alphabetic (e.g. "EST")Z
time zone as a time offset using GMT (e.g. "GMT+1")z
calendar: the name or abbreviation of a calendar nameC
era: the name of a baseline for the numbering of yearsE
modifier: see Formatting numbers as a sequence of characters (page 399)token
modifier: name in lower casen
modifier: name in upper caseN
modifier: name in mixed caseNn
modifier: traditional (vs. alphabetic)t
modifier: ordinalo
modifier: length ", min-width-or-*- max-width",

Page 346 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The need for abstractions (cont.)
Chapter 3 - XPath data model

Consider an XML document comprised of 26 empty and non-empty elements named "A"
through "Z" (without any text or new-line characters of any kind):
01 <A><C/><D/><E/><F><G><H/></G><I/><J><K/><L><M/><N/></L><O/>
02 <P/><Q><R/><S/></Q></J><T/><U><V/></U></F><W/><X/><Y><Z/></Y>

The following depicts this document's complete node tree (not showing namespaces):

self::

root

ancestor-or-self::

ancestor::

parent::

preceding-sibling::

descendant::

following-sibling::

child::

preceding::
 following::

descendant-or-self::

(1) not shown: attribute and

namespace nodes and axes

(2) letter order indicates nodes

in document order

A

B

G
 I

E
D

C

F

H
 K

M

L

J

N

P
 Q

W
 Y
X

Z
T
 U

V

S
R

O

- the root of the tree is at the top
- the leaves of the tree are towards the bottom
- the context node in this example is in the center with the bold circle
- the dotted lines completely surround the nodes of the tree that are members of each axis

relative to the context node

Page 72 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Inferring structure when there is none
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

An XPath location step addresses all nodes along an axis before being filtered by a predicate.

Consider the need to infer nested structure from a flat structure when formatting lists and list
items from the instance bullet.xml :
01 <?xml version="1.0"?>
02 <doc>
03 <listhead>The first list of information:</listhead>
04 <bullet>first member of first list</bullet>
05 <bullet>second member of first list</bullet>
06 <bullet>third member of first list</bullet>
07 <listhead>The second list of information:</listhead>
08 <bullet>first member of second list</bullet>
09 <bullet>second member of second list</bullet>
10 </doc>

The desired output is:
01 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
02 <html>
03 <p>The first list of information:</p>
04
05 first member of first list
06 second member of first list
07 third member of first list
08
09

10 <p>The second list of information:</p>
11
12 first member of second list
13 second member of second list
14
15

16 </html>

Page 347 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data types
Chapter 3 - XPath data model

 XPath 1.0 treats node values as strings and has a limited number of data types
- boolean, number, string, node set and result tree fragment

 XPath 2.0 introduces data types based on the W3C Schema data type hierarchy:

anyAtomicType

duration

dateTime

time

date

gYearMonth

gYear

gMonthDay

gDay

gMonth

string
 token
 language

Name
 NCName

ID

IDREF
 IDREFS

ENTITY
 ENTITIES

NMTOKEN
 NMTOKENS

boolean

base64Binary

hexBinary

double

decimal

float

anyURI

QName

NOTATION

normalized

String

"instance of", variables and

casting allowed

schema-aware only support

for "instance of", variables

and casting

Background

Legend:

XSD primitive types

user-defined

content types

untypedAtomic

element

document

attribute

namespace

text

comment

yearMonthDuration

dayTimeDuration

processing-instruction

user-document

user-element

user-attribute

XPath primitive

types

item

node

XPath derived types

XSD derived types

integer
 long
 int
 short
 byte

nonNegative

Integer

nonPositive

Integer

positive

Integer

negative

Integer

unsigned

Long

unsigned

Int

unsigned

Short

unsigned

Byte

"instance of" and variables

allowed, but never casting

When referenced in transforms, types must be namespace qualified:
- e.g. xmlns:xs="http://www.w3.org/2001/XMLSchema"

- any prefix can be used

Types allowed for casting are value constructors when used with function syntax:
- <xsl:variable name="meetingStart" as="xs:dateTime"

 select="xs:dateTime('2005-12-04T11:00:00Z')"/>

 Some types are only available in schema-aware versions of the processor
- e.g. NOTATION and most XSD derived types

Page 73 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Inferring structure when there is none (cont.)
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

It is necessary to deal with sibling elements in order to place adjacent siblings into the inferred
structure, but XPath expressions do not distinguish adjacent siblings from siblings that are
separated from each other.

Note the differences between the following expressions available with XPath:
- following-sibling::bullet

- all following sibling element nodes named "bullet "
- following-sibling::*[self::bullet]

- all following sibling element nodes named "bullet "
- following-sibling::bullet[1]

- the first following sibling element nodes named "bullet ", not considering that
there may or may not be any intervening sibling elements of other types

- following-sibling::*[1]
- the immediately following sibling element node, regardless that node's name

- following-sibling::*[1][self::bullet]
- the immediately following sibling element node only if it is named "bullet ",

otherwise the empty node set is returned

Page 348 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sequence types
Chapter 3 - XPath data model

A sequence type is a declaration combination of data type and cardinality
- item() - union of any node type or atomic value
- node() - any node (tree construction - see page 119)

- seven types of tree nodes described in this chapter
- e.g. element() , attribute() , text() , etc.
- three types of named tree nodes described in this chapter
- e.g. element(name) , attribute(name) , processing-instruction(name)
- two types of typed tree nodes described in this chapter
- e.g. element(name, type) , attribute(name, type)
- two types of declared tree nodes described in this chapter
- e.g. schema-element(name) , schema-attribute(name)
- qualified document nodes described in this chapter
- e.g. document-node(element-name-type-declaration-test)
- user-defined globally-declared types
- e.g. mySchema:zip-code

- xs:anyAtomicType - any atomic value (lexical construction - see page 73)
- W3C Schema data types
- e.g. xs:string , xs:integer , xs:duration , xs:gMonth , etc.
- XPath 2 data types
- e.g. xs:dayTimeDuration , xs:yearMonthDuration
- e.g. xs:untypedAtomic - an atomic value without a type

Non-zero cardinality specified using Kleene operators "+", "?" and "* ", for example:
- empty-sequence() - zero to zero (i.e. no items of any kind)
- xs:string - exactly one string (i.e. mandatory)
- xs:string? - zero or one strings (i.e. optional)
- xs:string+ - one or more strings (i.e. mandatory and repeatable)
- xs:string* - zero or more strings (i.e. optional and repeatable)
- element(email)+ - one or more <email> elements
- element(email)? - zero or one <email> elements
- xs:item()* - zero or more items of any type

The following data types are not allowed as sequence types
- xs:anyType (un-validated element node)
- xs:untyped (un-validated attribute node content)
- xs:anySimpleType (lists and unions only)

- includes xs:IDREFS , xs:NMTOKENS and xs:ENTITIES
- includes user-defined list and union types

Page 74 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Inferring structure when there is none (cont.)
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

The following bullet.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--bullet.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:output indent="yes"/>
07

08 <xsl:template match="doc">
09 <html><xsl:apply-templates/></html>
10 </xsl:template>
11

12 <xsl:template match="bullet"> <!--handle every bullet in turn-->
13 <xsl:choose><!--don't always act on *every* bullet there is-->
14 <!--when there is an immediate previous sibling of the
15 same name, then assume this node has already been
16 addressed by the first of the contiguous siblings-->
17 <xsl:when test="preceding-sibling::*[1][self::bullet]"/>
18 <xsl:otherwise><!--at the first of a group of siblings-->
19 <!--"walk" along all sibling bullets for list items-->
20 <xsl:apply-templates select="." mode="sibling-bullets"/>
21
22 </xsl:otherwise>
23 </xsl:choose>
24 </xsl:template>
25

26 <!--place each of a group of adjacent siblings-->
27 <xsl:template match="bullet" mode="sibling-bullets">
28 <xsl:apply-templates/> <!--put out this one-->
29 <!--go to next one-->
30 <xsl:apply-templates mode="sibling-bullets"
31 select="following-sibling::*[1][self::bullet]"/>
32 </xsl:template>
33

34 <xsl:template match="listhead"> <!--other stuff-->
35 <p><xsl:apply-templates/></p>
36 </xsl:template>
37

38 </xsl:stylesheet>

Page 349 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing result trees
Chapter 3 - XPath data model

Building a result predictably
- created as an abstract tree of nodes

- the result node tree is constructed using nodes from the operation and source trees,
and nodes synthesized by operation tree expressions

- result is described according to the same data model for XML markup as is used
for input

- the processing of a template builds a portion of the result as sub-tree of nodes
reflecting the output information

- the interpretation of a result template is reliable and reproducible
- the processor acts on instructions the same way every time
- some aspects (e.g. order of attribute) is implementation-dependent

- one-pass construction of the result tree
- no "going back and changing" anything in the result tree
- created in a single pass in result parse-order

- serialization instantiates markup syntax
- the emission of the result node tree (if so desired)
- in XML markup according to the standard

- the transform writer does not control which markup constructs are used for
representing XML information

- the processor can make arbitrary decisions as long as the end result is well
formed

- using alternative markup or syntax conventions if made available by the processor
(e.g.: interpretation of a colloquial vocabulary into a binary format)

Page 75 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Templates as pseudo-subroutines
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

Some algorithms required for transformation are not met by simple pattern matching and node
set selection when:

- sibling elements are indistinguishable to pattern matching
- ancestral elements are indistinguishable to pattern matching
- it is sometimes necessary to "walk" along the source node tree to find or process

information

By passing control to another template rule, opportunities exist to:
- add to the result tree before passing control again
- add to the result tree after control is passed back
- pass values to bind to parameterized variables

Consider the (contrived) need to process the following invert.xml instance:
01 <?xml version="1.0"?>
02 <test val="a">
03 <test val="b">
04 <test val="c">
05 <test val="d">
06 <test>
07 <greeting>Greeting in the middle of the file.</greeting>
08 </test>
09 </test>
10 </test>
11 </test>
12 </test>

Note how the innermost test element has no attribute, has no test element as a child, and
is contained within elements that are nested back to the document element, each uniquely
identified by an attribute value for reporting purposes (but not used in this contrived example
for pattern matching).

Page 350 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath data model
Chapter 3 - XPath data model

The XPath productions covered in this chapter are:
- (: :)

- commenting XPath expressions
- if () then else

- XPath choice statement
- for ... return ...

- XPath tuple statement
- empty-sequence()

- the empty sequence sequence type
- /

- location path address steps
- $

- variable references
- ()

- parenthesized expressions

The XSLT instructions covered in this chapter are:
- <xsl:strip-space>

- indicate those source tree nodes in which white-space-only text nodes are not to
be preserved.

- <xsl:preserve-space>
- indicate those source tree nodes in which white-space-only text nodes are to be

preserved

The XPath functions covered in this chapter are:
- last()

- the number of nodes in the context/current node list
- position()

- the ordinal number of the current node in the context/current node list
- .

- context item

Page 76 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Templates as pseudo-subroutines (cont.)
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

The following result echoes the instance with typical template rules and then inverts the instance
inside-out, translating the innermost element, and then inverting the wrapping elements by
walking the node tree towards the root (note the attributes are copied into both the mock start
and end tags to illustrate where in the node tree processing is being executed):
01 <result>
02 Non-inverted Structure (translated):
03 {test val="a"}
04 {test val="b"}
05 {test val="c"}
06 {test val="d"}
07 {test}
08 <greeting>Greeting in the middle of the file.</greeting>
09 {/test}
10 {/test val="d"}
11 {/test val="c"}
12 {/test val="b"}
13 {/test val="a"}
14

15 Inverted Structure:
16 {/test}
17 {/test val="d"}
18 {/test val="c"}
19 {/test val="b"}
20 {/test val="a"}
21

22 {test val="a"}
23 {test val="b"}
24 {test val="c"}
25 {test val="d"}
26 {test}
27 </result>

Note how in the resulting inverted structure:
- the mock end tags precede the mock start tags
- the innermost test mock element (with attribute "a") is the original document element

This translation cannot be accomplished using only match patterns.

Page 351 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The file abstractions
Chapter 3 - XPath data model
Section 1 - XPath data model components

XPath describes 7 kinds of nodes present in node trees (illustrated on page 72)
- some node kinds are not visible in certain types of node trees
- some node kinds are only tree branches, or only tree leaves, or can be both
- some node kinds are considered children

- those that are children are ordered in the node tree in document order
- those that are not children are ordered in any order chosen by the processor

- some node kinds are named
- all node kinds have a value of some type

- either directly associated with the node or calculated from descendent node values
- simple lexical strings directly reflecting the characters in the XML syntax

- XML normalization is done on end-of-line sequences and DTD attribute types
- the data type of the string value is xs:untypedAtomic

- both the lexical XML and the XSD schema-qualified values are available
- in the presence of a W3C Schema declaration for the node and validation is

engaged
- consider an example where <mynum> is declared in the schema to be a number
- e.g. <mynum>0001</mynum> has a string value of "0001 "

- the string representation of the value is the "schema normalized value"
- e.g. <mynum>0001</mynum> has a data value of 1

- the data representation of the value is the "schema typed value"
- all node kinds have a basic addressing syntax in an XPath expression

- detailed later in the module with nuances and alternative syntaxes
- formal details for XPath 2: http://www.w3.org/TR/xpath-datamodel/

Every node has an absolute "base URI" (illustrated on page 9)
- the URI of the physical entity in which the entity was parsed

- either the document's URI or an external entity's URI
- used when dealing with relative URI values in attached and descendent nodes
- declarations of xml:base= are respected

- http://www.w3.org/TR/xmlbase/

Every node has a unique generated identifier persistent only within the transformation
- comprised of only alphanumeric characters and no punctuation
- composed by any method the processor wishes to use and is opaque to user dissection
- unique across all nodes of all source trees and fixed only for the duration of the transform

- may be different the next time the same tree is used in the same transform

Page 77 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Templates as pseudo-subroutines (cont.)
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

The following stylesheet invert-simple.xsl walks the input structure:
01 <?xml version="1.0"?><!--invert-simple.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05]>
06 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
07 version="1.0">
08

09 <xsl:output omit-xml-declaration="yes"/>
10

11 <xsl:template match="/">
12 <result>
13 <xsl:text>&nl;Non-inverted Structure (translated):</xsl:text>
14 <xsl:apply-templates/>
15 <xsl:text>&nl;Inverted Structure:&nl;</xsl:text>
16 <!-- start from the test node that has no children-->
17 <xsl:apply-templates mode="walk-up" select="//test[not(test)]"/>
18 <xsl:text>&nl;</xsl:text>
19 </result>
20 </xsl:template>
21

22 <xsl:template match="test"> <!--walking down the tree-->
23 <xsl:text>&nl;{test</xsl:text>
24 <xsl:call-template name="showattrs"/> <!--echo attrs-->
25 <xsl:text>}</xsl:text>
26 <xsl:apply-templates select="*"/> <!--walk down to children-->
27 <xsl:text>{/test</xsl:text>
28 <xsl:call-template name="showattrs"/> <!--echo attrs-->
29 <xsl:text>}&nl;</xsl:text>
30 </xsl:template>
31

32 <xsl:template match="greeting"> <!--preserve greeting-->
33 <xsl:text>&nl;</xsl:text>
34 <xsl:copy-of select="."/>
35 <xsl:text>&nl;</xsl:text>
36 </xsl:template>

Page 352 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Parent/child and attachment relationships
Chapter 3 - XPath data model
Section 1 - XPath data model components

The relationships between nodes:

<element attr="value" xmlns:ns="uri">

Child relationships
Parent relationship

Attachment relationships

</element>
.....

- an attached node is a node created from markup found in the start or empty tag of an
element

- specified and defaulted attributes
- namespaces

- a child node of an element node is a node created from markup found between the start
and end tag of an element

- text
- comments
- processing instructions
- elements

Root node is at the top of the node tree
- called the "document node" in XPath 2.0
- children include the document element
- other children are the comments or processing instructions in the prologue and epilogue

of the document (respectively the markup before the start of the document element and
after the end of the document element)

- the only text outside of markup declarations outside of the document element is
white-space and is not represented in the node tree

A node is the parent of all nodes that are attached to it or are children of it
- the root is the only node in the tree without a parent

- exception that the node of a variable of a single tree node also does not have a
parent

Document order is an important concept (illustrated on page 72)
- hierarchical XML components are ordered in a "depth-first, breadth next" order
- also called "parse order" (easily remembered as "the order of the start tags")
- some constructs are inherently unordered according to XML
- at times nodes can be counted in "reverse document order"

Page 78 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Templates as pseudo-subroutines (cont.)
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

01 <xsl:template mode="walk-up" match="*"><!--walking up the tree-->
02 <!--processing before the "subroutine call"-->
03 <xsl:text>{/test</xsl:text>
04 <xsl:call-template name="showattrs"/> <!--echo attrs-->
05 <xsl:text>}&nl;</xsl:text>
06 <xsl:if test="parent::*">
07 <!--the pseudo "subroutine call" itself-->
08 <xsl:apply-templates mode="walk-up" select="parent::*"/>
09 </xsl:if>
10 <!--processing after the "subroutine call"-->
11 <xsl:text>&nl;{test</xsl:text>
12 <xsl:call-template name="showattrs"/> <!--echo attrs-->
13 <xsl:text>}</xsl:text>
14 </xsl:template>
15

16 <xsl:template name="showattrs"> <!--display the attributes-->
17 <xsl:for-each select="@*">
18 <xsl:text> </xsl:text>
19 <xsl:value-of select="name(.)"/>="<xsl:value-of
20 select="."/>"</xsl:for-each>
21 </xsl:template>
22

23 </xsl:stylesheet>

Page 353 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Comment node and processing instruction node
Chapter 3 - XPath data model
Section 1 - XPath data model components

XML annotations are extrinsic information, not constrained by a document model:

Comment node
- a single unnamed node is created from a single comment

- <!-- comment-value-string-->
- this type of node is a child of its parent node
- this type of node is always a leaf of the tree and never has any child nodes of any type
- the node value is the content of the comment not including the opening and closing

markup delimiters
- it is an error if a created comment node is supplied with the "-- " text string or ends with

a "- " character
- an XSLT processor may choose to not report the error and separate the two

characters with a space or follow the final character with a space
- addressed using: comment()

Processing instruction node
- a single named node is created from a single processing instruction

- <?piTarget?>
- <?piTarget p-i-value-string?>
- the name of the node is the XML Processing Instruction Target

- no access to any NOTATION that may be formally declaring the PI target
- this type of node is a child of its parent node
- this type of node is always a leaf of the tree and never has any child nodes of any type
- the node value is the string content of the processing instruction following all white space

following the name, but not including the opening and closing markup delimiters
- there are no attribute nodes for pseudo-attributes in PI values (see Stylesheet

association (page 34) for an example)
- the value is always a simple string
- all white space after the first non-white-space character is preserved (no

normalization)
- it is an error if a created processing instruction node is supplied with the "?>" text string

- an XSLT processor may choose to not report the error and separate the two
characters with a space

- addressed using: processing-instruction(optional-target)

Page 79 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Passing variables to pseudo-subroutines
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

The following result from the same data can be achieved by passing information when treating
templates as pseudo-subroutines:
01 <result>
02 Non-inverted Structure (translated):
03 {test val="a"}
04 {test val="b"}
05 {test val="c"}
06 {test val="d"}
07 {test}<hello>Greeting in the middle of the file.</hello>{/test}
08 {/test val="d"}
09 {/test val="c"}
10 {/test val="b"}
11 {/test val="a"}
12

13 Inverted Structure:
14 {/test}
15 {/test val="d"}
16 {/test val="c"}
17 {/test val="b"}
18 {/test val="a"}
19 <hello>Greeting in the middle of the file.</hello>
20 <greeting>Greeting in the middle of the file.</greeting>
21 {test val="a"}
22 {test val="b"}
23 {test val="c"}
24 {test val="d"}
25 {test}
26 </result>

Information is passed from being generated in the innermost-nested source tree element, to
be displayed in the outermost-nested source tree element that is the innermost result tree
element. Both result tree fragments and node sets are shown to compare how their processing
differs.

Page 354 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Element node
Chapter 3 - XPath data model
Section 1 - XPath data model components

- a single node is created for each element
- <elementName attributes/>

- an empty element using the empty element tag
- <elementName attributes></ elementName>

- an empty element using a start tag and an end tag
- <elementName attributes>content</ elementName>

- a non-empty element using a start tag and an end tag
- the same order as the elements' start tags in the instance
- depth-first breadth-next tree order (a.k.a. document order or parse order)
- supports processing predictability

- many XPath facilities address document nodes in document order
- some facilities address document nodes in reverse document order

- this type of node is a child of its parent node
- may have child content nodes

- text, element, comment and processing instruction nodes
- descendants of an element node are considered to be all the child nodes plus the

descendants of child element nodes
- does not directly include any character data as any element's character data is found

only in a child text node
- an empty element does not have any child nodes

- may have attached non-content nodes
- not considered to be child nodes of an element node
- the element node is considered to be the parent of an attached node
- specified or defaulted attributes as attribute nodes
- namespace declaration nodes
- an empty element may have attached nodes

- may have a user-defined unique identifier useful for random access
- by way of an attribute of type ID as detected by the XML processor

- by way of an element's content being of type ID
- this is different than the vendor-generated unique identifier for every node
- scope of uniqueness for user-defined identifiers is only the given source tree
- only guaranteed to be unique if the document is validated
- nodes distinguished by their unique identifier are returned from calling a function,

not from using an axis
- the name of the node is the element type
- the value of the node is the concatenation, in document order, of all text nodes that are

descendants of the element
- addressed using: elementName or the wildcard *

Page 80 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Passing variables to pseudo-subroutines (cont.)
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

The stylesheet invert-parm.xsl illustrates this technique of passing information:
01 <?xml version="1.0"?><!--invert-parm.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06

07 <xsl:output omit-xml-declaration="yes"/>
08

09 <xsl:template match="/">
10 <result>
11 <xsl:text>&nl;Non-inverted Structure (translated):</xsl:text>
12 <xsl:apply-templates/>
13 <xsl:text>&nl;Inverted Structure:&nl;</xsl:text>
14 <!-- start from the test node that has no children-->
15 <xsl:apply-templates mode="walk-up" select="//test[not(test)]">
16 <!--illustrate difference between
17 result tree fragments and node sets-->
18 <xsl:with-param name="middle-rtf">
19 <xsl:apply-templates select="//test[not(test)]/*"/>
20 </xsl:with-param>
21 <xsl:with-param name="middle-node"
22 select="//test[not(test)]/*"/>
23 </xsl:apply-templates>
24 <xsl:text>&nl;</xsl:text>
25 </result></xsl:template>
26

27 <xsl:template match="test"> <!--walking down the tree-->
28 <xsl:text>&nl;{test</xsl:text>
29 <xsl:call-template name="showattrs"/> <!--echo attrs-->
30 <xsl:text>}</xsl:text>
31 <xsl:apply-templates select="*"/> <!--walk down to children-->
32 <xsl:text>{/test</xsl:text>
33 <xsl:call-template name="showattrs"/> <!--echo attrs-->
34 <xsl:text>}&nl;</xsl:text></xsl:template>
35

36 <xsl:template match="greeting"> <!--transform greeting-->
37 <hello><xsl:apply-templates/></hello></xsl:template>

Page 355 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespace node
Chapter 3 - XPath data model
Section 1 - XPath data model components

- the value of the URI declared to use in place of the namespace prefix
- xmlns=" default-namespace-URI" and xmlns=""
- xmlns: namespace-prefix=" namespace-URI"
- xmlns: namespace-prefix="" (XML 1.1 only)

- an element has as many namespace nodes as it and its ancestors have declarations
- can never be used in a matching pattern, only in a selection expression
- present in the source and operation trees and the processor adds them to the result

tree when copying element nodes
- a common problem when copying nodes to the result tree is the copying of

unwanted namespace nodes that originate from ancestral declarations
- xmlns:xml="http://www.w3.org/XML/1998/namespace on every node

- consider an example where e1 has two namespace nodes attached and e2 has three
- 01 <e1 xmlns:p="urn:X-P">

02 <e2 xmlns="urn:X-Q" p:abc="abc" def="def" xml:id="x"/>
03 </e1>

- namespace node for xml: on both elements
- e1 and def= are in no namespace
- e2 is in the "urn:X-Q " namespace; p:abc= is in the "urn:X-P " namespace

- namespace nodes are arbitrarily ordered
- this type of node is attached to element nodes and not considered a child

- the element to which it is attached is considered its parent
- it is always attached to an element
- attached to an element when attached, but it may be standalone in a variable

- this type of node is always a leaf of the tree and never has any child nodes of any type
- the name of the node is the namespace prefix
- the value of the node is the namespace URI
- copying any source or operation element to the result copies all its namespace nodes
- operation tree literal result elements can have namespace nodes pruned

- [xsl:]exclude-result-prefixes=" space-separated-prefixes"
- prunes the given namespace node from descendent literal result elements
- the namespace prefix is needed only if this attribute is placed on a literal result

element, not when placed on an XSLT instruction
- the prefix used in a transform to refer to a namespace URI need not be the same prefix

used in a source document for the URI being referred to
- each document and associated node tree has own set of prefixes
- node naming based upon referenced URI values in each independent prefix space
- common mistake to try to match a default non-null namespace source tree element

with a default null namespace operation tree element or expression
- addressed using: namespace:: prefix or the wildcard namespace::*

Page 81 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Passing variables to pseudo-subroutines (cont.)
Chapter 7 - Data type expressions and functions
Section 9 - Traversing the source tree

(cont.)
01 <xsl:template mode="walk-up" match="*"><!--walking up the tree-->
02 <xsl:param name="middle-rtf"/> <!--"called" variables-->
03 <xsl:param name="middle-node"/>
04 <!--processing before the "subroutine call"-->
05 <xsl:text>{/test</xsl:text>
06 <xsl:call-template name="showattrs"/> <!--echo attrs-->
07 <xsl:text>}&nl;</xsl:text>
08 <xsl:choose>
09 <xsl:when test="parent::*">
10 <!--the pseudo "subroutine call" itself-->
11 <xsl:apply-templates mode="walk-up" select="parent::*">
12 <!--"calling" vars-->
13 <xsl:with-param name="middle-rtf" select="$middle-rtf"/>
14 <xsl:with-param name="middle-node" select="$middle-node"/>
15 </xsl:apply-templates>
16 </xsl:when>
17 <xsl:otherwise> <!--illustrate both types of variables-->
18 <xsl:copy-of select="$middle-rtf"/> <!--tree fragment-->
19 <xsl:text>&nl;</xsl:text>
20 <xsl:copy-of select="$middle-node"/> <!--node set-->
21 </xsl:otherwise>
22 </xsl:choose>
23 <!--processing after the "subroutine call"-->
24 <xsl:text>&nl;{test</xsl:text>
25 <xsl:call-template name="showattrs"/> <!--echo attrs-->
26 <xsl:text>}</xsl:text>
27 </xsl:template>
28

29 <xsl:template name="showattrs"> <!--display the attributes-->
30 <xsl:for-each select="@*">
31 <xsl:text> </xsl:text>
32 <xsl:value-of select="name(.)"/>="<xsl:value-of
33 select="."/>"</xsl:for-each>
34 </xsl:template>
35

36 </xsl:stylesheet>

Page 356 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Attribute node
Chapter 3 - XPath data model
Section 1 - XPath data model components

- a single attribute node is attached to an element node for
- each attribute specified in the start tag of that element

- attributeName=" specifiedString"
- attributeName=' specifiedString'

- each attribute with a default value in the document model
- <!ATTLIST elemType attrName attrType " defaultString">
- <!ATTLIST elemType attrName attrType ' defaultString'>
- for a document model expressed in a DTD (Document Type Definition), a

node is not created for an attribute declared with an #IMPLIED default value
- <xsd:attribute name=" attrName" default=" defaultString">
- <xsd:attribute name=" attrName" default=' defaultString'>
- only schema-aware processing recognizes W3C schema defaults

- attribute node contents normalized according to XML rules
- XML section 2.11 changes any end-of-line sequence into a linefeed character
- XML section 3.3.3 changes any attribute linefeed character into a space
- XML section 3.3.3 changes sequences of white space characters in non-CDATA

attributes to a single space
- a specified attribute without a DTD declaration is assumed to be CDATA

- attribute nodes are arbitrarily ordered
- this type of node is always attached to element nodes

- it is not considered a child of the element node
- the element to which it is attached is considered its parent

- this type of node is always a leaf of the tree and never has any child nodes of any type
- the name of the node is the name of the attribute
- the value of the node is the normalized value of the attribute (as described above)
- addressed using: @attributeName or attribute:: attributeName or the wildcards

@* or attribute::*

Page 82 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 8 - Constructing the result tree

- Introduction - Constructing result-tree nodes
- Section 1 - Result tree node instantiation
- Section 2 - Copying nodes
- Section 3 - Numbering instructions

Page 357 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Attribute node (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

- the XML Namespace attributes xmlns= and xmlns: prefix= are treated specially
- creates a namespace node only, an attribute node is not created

- the XML attributes xml:space= and xml:lang= are not treated specially
- it is the transform's responsibility to copy or create such nodes in the result tree
- the presence of such attributes in XSLT instructions in the stylesheet does not

implicitly reproduce the use of the attributes in the result
- no "global" attributes

- in XML Recommendation 1.0 there is no such construct as a "shared attribute" or
"global attribute", which would be associated with more than one instantiated
element or defined element type

- a defaulted or specified attribute of any given element type is instantiated for
every such element in the instance

- a defaulted or specified attribute that may happen to have the identical
declaration in each of two element types is not treated specially and is
instantiated once for every element of each type in the instance

Page 83 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing result-tree nodes
Chapter 8 - Constructing the result tree

Result-tree nodes are used both in the result tree and in the transformation
- the creation of the result tree
- creating a result-tree fragment
- creating a temporary tree

Recall the earlier processing model diagram (page 137)
- the diagram depicts the copying of nodes from the operation tree and the source tree to

the result tree
- the operation tree nodes that are copied to the result tree are the literal result

elements
- also possible to explicitly add nodes of different types to the result tree

XSLT supports:
- direct construction of result tree nodes
- different ways to copy nodes from the source tree to the result tree
- constructing text nodes in the result tree reflecting numbering information found in the

source tree

Page 358 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Attribute node (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

- an attribute of typeID is significant
- confers a unique identifier to the element

- the element is assigned a unique identifier from the attribute value
- requires the source file to have a document model whose declaration for the

attribute is of type ID
- no special meaning conferred for attributes named "id ", only for

attributes of type ID
- note that it is an error if there are two elements in the source tree with

both an attribute of type ID and the same value for that attribute
- if the processor chooses to not report the error, the first element

with the attribute of the given value is considered the element with
the unique identifier

- well-formed document examples:
- without a complete DTD it is sufficient to add only an attribute list declaration

for the attribute in question
<!DOCTYPE prodsummary [
<!ATTLIST product id ID #REQUIRED>
]>

and
<!DOCTYPE custsummary [
<!ATTLIST cust custNbr ID #REQUIRED>
]>

and
test.dtd:
<!ATTLIST cust custNbr ID #REQUIRED>
test.xml:
<!DOCTYPE custsummary SYSTEM "test.dtd">

- W3C schema example declaration:
01 <xsd:element name="product" maxOccurs="unbounded">
02 <xsd:complexType mixed="true">
03 <xsd:attribute name="id" type="xsd:ID"/>
04 </xsd:complexType>
05 </xsd:element>

- recognizes xml:id= to implicitly have an ID type
- http://www.w3.org/TR/xml-id/

- it is a common error to process an input file that does not declare ID typed attributes
with a transform expecting to use unique identifiers

- function calls returning the sought nodes return the empty node set

Page 84 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing result-tree nodes (cont.)
Chapter 8 - Constructing the result tree

The XSLT instructions covered in this chapter are as follows.

Instructions related to building the result tree:
- <xsl:attribute>

- instantiate an attribute node in the result tree
- <xsl:attribute-set>

- declare a set of attribute nodes for use in the result tree
- <xsl:comment>

- instantiate a comment node in the result tree
- <xsl:document>

- instantiate a document node in the result tree
- <xsl:element>

- instantiate an element node in the result tree
- <xsl:namespace>

- instantiate a namespace node in the result tree
- <xsl:processing-instruction>

- instantiate a processing instruction node in the result tree
- <xsl:text>

- instantiate a text node in the result tree
- <xsl:copy>

- instantiate a copy of the current node in the result tree
- <xsl:copy-of>

- instantiate a complete copy of a specified node in the result tree
- <xsl:number>

- add a string to the result tree representing the position of the current node

Page 359 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Text node
Chapter 3 - XPath data model
Section 1 - XPath data model components

- a single unnamed node is created for a string of adjacent character data
- all text and character markup that is not any other kind of document markup

- <e1>text1<e2>other</e2> text2<!--c1--> text3</e1>
- e1 has mixed content: a total of five children: three text nodes, element

e2 and the comment
- note the text "other " is a child of e2 not a child of e1

- "other " is a descendent text node of e1
- characters are regarded in their abstract UCS (Universal Character Set) or

Unicode value, not by any entity that may have been used to specify the
character in the instance

- the text node below <elem>abc<def</elem> is "abc<def "
- impediment to supporting markup preservation in transforms

- the markup used to represent characters is not preserved
- the processor can choose to serialize result tree text node characters using

any escaping mechanisms appropriate to the active serialization method
- even element content can have sibling text nodes

- <price>30<!-- illegible, might be 39 -->.00</price>
- the <price> element has three child nodes

- all entity references are expanded and their boundaries are not preserved
- all text is treated at the end result of parsing the instance

- all text not in markup before or after the document element is ignored
- by definition it must be white space and is, therefore, not considered part of

the information
- see important detailed notes later in this chapter regarding white space preservation

in text nodes
- any CDATA section boundaries are not preserved

- considered as only syntactic sugar that reduces the amount of text escaping done
in the creation of XML textual information

- all text found in a CDATA section is added to the text node and is indistinguishable
from text not found in a CDATA section

- line endings from external entities are normalized to
 per XML 1.0 section 2.11
- note that characters found inside comments and processing instructions are not considered

character data, thus they are not captured in text nodes in the source tree
- note, however, that text nodes can be and are typically used in the transform to

specify the content of result tree comments and processing instructions
- this type of node is a child of its parent node
- this type of node is always a leaf of the tree and never has any child nodes of any type
- a text node's value is considered a sequence of Unicode characters

- unlike a string, a copied text node is not separated by a space from its neighbor
- addressed using: text()

Page 85 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Building result tree nodes directly
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

XSLT has instructions to create the following kinds of result tree nodes:
- attribute
- document
- element
- comment
- namespace
- processing instruction
- text

Validation against user-defined data types available when creating result tree nodes
- only when using a schema-aware processor
- only when turning on schema awareness

Page 360 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

White-space-only text nodes
Chapter 3 - XPath data model
Section 1 - XPath data model components

Text nodes with any non-white-space characters are always preserved and are not treated
specially

- all white space is preserved in every text node found to have at least one character other
than #x20 , #x9 , #xD or #xA (as defined by XML; respectively these characters are space,
horizontal tab, carriage return, and line feed)

White-space-only text nodes are often used for indentation
- 01 <elem1>

02 <elem2/>
03 <elem3>
04 <elem4/> <elem5/>
05 </elem3>
06 <elem6> </elem6>
07 </elem1>

- this example has white-space-only text nodes for indentation (elem1 and elem3)
and white-space-only text nodes for content (elem6)

- indentation is often important to humans but is usually never important to XML processors
- a transform written for data produced from an XML processor usually needn't be careful

about white-space if the source processor is emitting tightly expressed content
- a transform written for input instances authored by people need to be sensitive to the

vagaries of human data entry patterns
- some people will specify an "empty element" using start and end tags on different

lines not realizing there is a text node between the two tags

White-space-only text nodes in the operation tree ("boundary space"):
- white-space-only text strings within and between XPath expressions are not significant
- preservation is a local property of text in an XSLT stylesheet

- each individual white-space only text node is either preserved or discarded
- the use of the XML reserved attribute xml:space= in either the source or transform

instances can indicate which white-space-only text is significant

White-space-only text nodes in the source tree:
- the invocation of XPath 2.0 can specify behavior

- which white-space-only text in the source file creates white-space-only text nodes
in the source tree

- an XSLT stylesheet can specialize white-space-only text node preservation on a per
element basis

- the use of the XML reserved attribute xml:space= in either the source or transform
instances can indicate which white-space-only text is significant

Page 86 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing attribute nodes
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Adding a single attribute
01 <xsl:attribute name=" attribute-qname-AVT"
02 namespace=" optional-namespace-URI-for-qname-AVT">
03 attribute content
04 </xsl:attribute>

- name= and namespace= are attribute value templates

Alternative forms in XSLT 2.0
01 <xsl:attribute name=" attribute-qname-AVT"
02 namespace=" optional-namespace-URI-for-qname-AVT"
03 validation=" declared-type-style"
04 type=" strict-using-named-type">
05 attribute content
06 </xsl:attribute>

- validation= and type= are mutually exclusive and optional
- see Validating result tree nodes (page 186) for details on the attribute usage

01 <xsl:attribute name=" attribute-qname-AVT"
02 namespace=" optional-namespace-URI-for-qname-AVT"
03 validation=" declared-type-style"
04 type=" strict-using-named-type"
05 select=" expression" separator=" string-AVT"/>

Of note:
- add given attribute node to the result node tree for the current element

- name includes namespace prefix, if desired
- specifying an invalid name for a node is an error
- the select= and separator= are the same as for <xsl:value-of>

Page 361 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

White-space-only text nodes (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

When white-space-only text between instructions, expressions or construction nodes are not
included in the operation tree

- it is assumed to be indentation in the transform
- the writer of the transform must protect isolated strings of white-space that are needed

in the operation tree, otherwise they will be ignored in the creation of the operation tree

Preserved in the operation tree by the XSLT processor
- there is no XSLT keyword to specify that white-space-only text nodes are preserved
- 01 <xsl:value-of select="given"/> <xsl:value-of select="surname"/>

- intuitively one would think the end result would put a space between the two values
- incorrect because the space is ignored and the two string values are abutted
- using doesn't help because it is translated to a space by the XML processor

- 01 <xsl:value-of select="given"/>
02 <xsl:text> </xsl:text>
03 <xsl:value-of select="surname"/>

- all white space is preserved in every text node that is a child of an <xsl:text>
instruction found in stylesheet instance

- note that <xsl:text> elements cannot have any elements in their content (e.g.
XSLT instructions or literal result elements), they can only have text

- 01 <xsl:value-of select="surname"/>, <xsl:value-of select="given"/>
- not a problem because the text between expressions is not white-space-only

Page 87 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing attribute nodes (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Declaring a set of attributes
- only allowed as a top level instruction
- very useful for creating result trees with the XSL vocabulary due to the plethora of

attributes that can be specified
01 <xsl:attribute-set name=" attribute-set-qname">
02 optional <xsl:attribute> instructions
03 </xsl:attribute-set>

- declare a number of attributes and their values with a name using name=

01 <xsl:attribute-set name=" attribute-set-qname"
02 use-attribute-sets=" attribute-set-qnames">
03 optional <xsl:attribute> instructions
04 </xsl:attribute-set>

- declare a set of attributes from other sets of attributes using use-attribute-sets=

Using a set of attributes
01 <l-r-element xsl:use-attribute-sets=" attribute-set-qnames"/>

- add a set or sets of attributes to the result node tree for the literal result element
- also available when copying nodes
- xsl:use-attribute-sets= a literal result element, use-attribute-sets= for some

instructions
- sets are useful for XSL formatting transformations where numerous attributes need

to be specified

Page 362 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

White-space-only text nodes (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

 Controlled in the source by the invoker of the transformation
- strip all white-space-only text nodes
- strip ignorable white-space-only text nodes

- those that are in element content, not those in mixed content
- strip no white-space-only text nodes

Controlled in the source by the writer of the transformation
- the transform writer should assume the most difficult case of there being white-space-only

text children anywhere
- all element types are assumed to have white-space-only child nodes preserved

- the list of element types for which white-space-only child text nodes are stripped
is initially empty

- all element types should be assumed to have white-space-only child nodes
- the transform writer should write defensively by assuming all element types have

white-space-only child nodes present and preserved
- no safer assumption can be made about all element types because of invocation

- XSLT provides some stylesheet assertions regarding source tree creation
- <xsl:strip-space elements=" qnames-or-*"/> changes assumptions

- grows the space-separated list in elements= of element types being stripped
of white-space-only child text nodes

- <xsl:preserve-space elements=" qnames-or-*"/> overrides changed
assumptions

- shrinks the space-separated list in elements= of element types being stripped
of white-space-only child text nodes

- the ability to grow the list after shrinking the list or shrink the list after growing
the list is made available for stylesheets that are imported to other stylesheets

- the precedence rules for these instructions are the same as those for
<xsl:template> described for <xsl:import> in Chapter 6 Transform and
data management (page 209)

- applicable for only given element's direct child text nodes, not other descendent text
nodes

Page 88 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing attribute nodes (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Constructing attributes:
- attached only to an element node of the result node tree
- before any of the given element's content is added to the result tree
- only way to selectively add an attribute to the result tree

Consider the need to produce:
01 <list intro="no" compact="yes" ordered="yes">

Many chances to define and redefine n attribute of a given name
- prioritized handling ensures predictable behavior
- xsl:use-attribute-sets= processed first
- attribute specified in a literal result element are added next
- executed <xsl:attribute> instructions are added last
- latter attribute specifications replace former for given element
- nothing can change for attributes once element content has been added

01 <xsl:attribute-set name="list-stuff">
02 <xsl:attribute name="intro">yes</xsl:attribute>
03 <xsl:attribute name="compact">yes</xsl:attribute>
04 </xsl:attribute-set>
05 ...
06 <list intro="no" xsl:use-attribute-sets="list-stuff">
07 <xsl:if test="@type='ol'">
08 <xsl:attribute name="ordered">yes</xsl:attribute>
09 </xsl:if>
10 ...
11 </list>

- name= and namespace= are attribute value templates
- can use <xsl:text> to specify text content of an attribute

- even though a text node is not added to the result tree
- an attribute node is a leaf of the tree and never has children

Page 363 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

White-space-only text nodes (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

Overridden by the author of an XML instance
- XML 1.0 reserved attributes can be used by the author of an instance
- at the data model layer

- xml:space="preserve" specifies that white-space-only nodes be preserved
- xml:space="default" requests no special handling of white-space-only nodes
- no impact at data model layer on the white-space found in non-white-space-only

text nodes
- at an application/interpretation layer

- xml:space="preserve" can be used to indicate no handling of white-space found
in non-white-space-only text nodes

- e.g. for poetry or for mimicking HTML <pre> element for preformatted content
- up to the transform writer to decide what to do with non-white-space-only text

nodes in the influence of xml:space="preserve"
- applicable for all given element's descendent text nodes

- to the point at which a descendent element includes another white space XML
declaration

- according to the XML 1.0 recommendation, any XML document can declare the
intent that white space in document content be preserved by applications by using
xml:space="preserve" , or can declare the application to do what it wishes with
white space by using xml:space="default" :

- white-space-only text nodes under the influence of xml:space="preserve" are preserved
regardless of transform-specified controls

- overrides any other assumptions made by the processor
- can be useful in XSLT stylesheets to preserve the stylesheet indentation when constructing

the result tree
- e.g. when an XSLT stylesheet is creating an XSLT stylesheet

Page 89 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing element nodes
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Adding element nodes :
01 <xsl:element name=" element-type-qname-AVT"
02 namespace=" optional-namespace-URI-for-qname-AVT"
03 inherit-namespaces=" yes-or-no-default-yes"
04 validation=" declared-type-style"
05 type=" strict-using-named-type"
06 use-attribute-sets=" optional-sets-of-attributes">
07 optional-attribute-instructions
08 optional-element-content
09 </xsl:element>

- add given element node to result tree
- name includes namespace prefix, if desired

- specifying an invalid name for a node is an error
- name= and namespace= are attribute value templates
- inherit-namespaces= will attach the created element's namespace nodes to its child

elements copied from the source tree
- recall the process diagram on page 137
- consider element 3' is created with an instruction rather than being copied from

element 3
- in such a case the namespace nodes inherited by 3' from A' are not added to the

copied nodes 4' and 5'
- validation= and type= are mutually exclusive and optional

- see Validating result tree nodes (page 186) for details on the attribute usage
- sets of attributes are added using use-attribute-sets=

Page 364 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Internet Explorer compatibility
Chapter 3 - XPath data model
Section 1 - XPath data model components

Implementation compatibility warning re: Internet explorer
01 C:\ptux\samp>type task.xml
02 <?xml version="1.0" encoding="ISO-8859-1"?>
03 <?xml-stylesheet type="text/xsl" href="task.xsl"?>
04 <task>
05 Performed by: <name><given>Jane</given> <surname>Doe</surname></name>
06 </task>
07

08 C:\ptux\samp>..\prog\xsltjavasaxon task.xml task.xsl task.htm
09 Transforming task.xml with task.xsl to task.htm with XSLT 1.0...
10

11 C:\ptux\samp>type task.htm
12 <html>
13 <body>
14 Performed by: <i>Jane</i> <i>Doe</i>
15

16 </body>
17 </html>
18 C:\ptux\samp>..\prog\msxml task.xml task.xsl task.htm
19 Invoking MSXML....
20

21 C:\ptux\samp>type task.htm
22 <html>
23 <body>
24 Performed by: <i>Jane</i><i>Doe</i></body>
25 </html>
26

27 C:\ptux\samp>

- the XSLT specification uses the XPath data model and does not say anything formally
about white-space text nodes

- most XSLT processors preserve all white-space-only text nodes
- the typical processing of white-space-only text nodes is exhibited by the Saxon processor

producing a result with a space between the transformed given name and surname
- the default setting for the Microsoft XML processor is to ignore white-space-only text

nodes in both mixed content and element content in the data model of the source document
- loss of white-space between </given> and <surname>

- the Microsoft XSLT processor can be engaged through an API to preserve
white-space-only text nodes, but Internet Explorer provides no options to do so

Page 90 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing element nodes (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Naming an element node with an attribute value template:
01 <xsl:element name="H{count(ancestor-or-self::section) + 1}">
02 ...template...
03 </xsl:element>
04

05 <xsl:element name="{local-name(.)}"><!--strip namespace prefix-->
06 ...template...
07 </xsl:element>

Provides protection against nuances regarding attached namespace nodes
- copying a literal result element node from the operation tree to the result tree will copy

any attached namespace nodes
- except those pruned by exclude-result-prefixes= attribute

- copying an element node using <xsl:copy> from the source tree to the result will copy
any attached namespace nodes even if not used by the element node

- the <xsl:element> instruction synthesizes an element node without any unnecessary
namespace baggage

Recall Namespaces (page 30)
- the local name is the name without any prefix

Page 365 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document node
Chapter 3 - XPath data model
Section 1 - XPath data model components

- a.k.a. "root node"
- the only node in the tree without a parent

- the root node only occurs at the root of the tree as the parent of the document
element

- exception that the node of a variable of a single tree node also does not have a
parent

- source tree child nodes are restricted
- no text nodes
- exactly one element node (the document element)
- any number of nodes needed for comments and processing instructions present in

the XML instance outside of (either before or after), and in order with the element
node for the document element

- result tree child nodes are not restricted
- can include any number of element, text, comment and processing instruction nodes
- the type and count of nodes dictates the serialization of the result:

- a well-formed document entity
- with identical constraints as found in the source tree

- a well-formed external parsed general entity
- the constraint of a single element node as a child of the root node is

relaxed
- the node is not named
- the node's value is the value of the document element
- addressed using: /

Recall the physical hierarchy of XML documents (slide 9)
- a transformation can be used in a strategy of harvesting information from XML documents

into external parsed general entities that are brought into the definition of other XML
documents

Page 91 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing annotation nodes
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Adding processing instruction and comment nodes :
01 <xsl:processing-instruction name=" PI-target-AVT">
02 processing-instruction-sequence-constructor
03 </xsl:processing-instruction>

01 <xsl:comment>
02 comment-sequence-constructor
03 </xsl:comment>

Alternative forms in XSLT 2.0:
01 <xsl:processing-instruction name=" PI-target-AVT" select=" expression"/>

01 <xsl:comment select=" expression"/>

- specifying an invalid name for a node is an error
- name= is an attribute value template
- these nodes are leaves of the tree and never have children
- can use <xsl:text> to specify text content
- the processor automatically injects a space after the first character of a sequence that

matches the end delimiter
- the sequence "?>" found in processing instruction text
- the sequence "-- " found in comment text or when the text ends with "- "

- error condition when text content contains same sequence as the lexical delimiter for
the construct

- processing instruction text cannot contain "?>"
- comment text cannot contain "-- " or end with "- "
- processor may choose not to report the error

- will inject a space between the characters if no error reported

Page 366 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Summary of XPath data model nodes
Chapter 3 - XPath data model
Section 1 - XPath data model components

The following summarizes how these node types compare in general:

ValuedNamedChild/ At-
tached

Tree positionVisible in
node tree

Node type

string of all descen-
dent text nodes
concatenated

element type
name

childleaf (empty)
or branch (not
empty)

all node
trees

Element

specified or de-
faulted string

attribute nameattachedleafall node
trees

Attribute

URI stringprefixattachedleafdepends*Namespace

string after all first
white-space

PI Targetchildleafnot in oper-
ation node
tree

Processing Instruction

stringnochildleafnot in oper-
ation node
tree

Comment

Unicode sequencenochildleafdepends**Text (white-space-only)

Unicode sequencenochildleafall node
trees

Text (non-white-space-
only)

document elementnoN/Abranchall node
trees

Document (Root)

Page 92 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing annotation nodes (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Contextual diagnostic information can be injected in XML comments in the result
- the diagnostic reporting by the processor typically emits all of the diagnostic messages

as a stream without contextual information of when the messages are generated
- very helpful to synthesize an XML comment in the result tree with diagnostic information
- e.g. embedding a distinctive search string

- <!--debug: diagnostic information-->
- so as to make it easier to find the diagnostic information in the result

- e.g. embedding the XPath address of a source tree node
- <!--at: /doc/chapter[3]/fig[2]-->
- walking down the ancestor axis building the XPath address
- some XML editing tools accept such an XPath address as a locator value

- e.g. embedding referential information for otherwise-cryptic links
- <xref idref="d1e27"/><!--Chapter 3: Repair tasks-->

Page 367 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Summary of XPath data model nodes (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

*Namespace node dependencies:
- duplicated in all element nodes descendent from the declaration of the namespace
- pruned from the stylesheet tree during tree creation by using:

- xsl:exclude-result-prefixes=" names"
- cannot be pruned from the source tree during creation
- copied to the result tree when copying elements from the source tree or operation tree

**White-space-only text node dependencies:
- not made present in the operation tree for XSLT unless it is within the instruction:

- <xsl:text> </xsl:text>
- at user request for the source tree

- at processor invocation
- can be pruned from the source tree during tree creation by using:

- <xsl:strip-space elements=" qnames-or-*"/>
- source tree pruning can be overridden to be preserved by using:

- <xsl:preserve-space elements=" qnames-or-*"/>
- can be preserved in any XML document during tree creation when a descendant of an

element using the attribute:
- xml:space="preserve"

- can always be in the result tree

Specifically not included in the XPath data model but found in the Document Object Model
(DOM):

- CDATA section nodes
- considered to be only syntactic sugar and not part of the information structure

- document fragment and entity reference nodes
- syntactic fragmentation is consumed by the XML processor within the

transformation processor
- document type, entity and notation nodes

- no such information in XPath data model
- very limited access to unparsed entity URI strings through XSLT

Page 93 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing namespace nodes
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Adding a namespace node :
01 <xsl:namespace name=" namespace-prefix-AVT">
02 namespace-URI-sequence-constructor
03 </xsl:namespace>
04

05 <xsl:namespace name=" namespace-prefix-AVT"
06 select=" expression"/>

- name= is an attribute value template
- the namespace name (which is typically an absolute URI) is specified in either the

select= attribute or the sequence constructor, but not both
- the namespace name cannot be evaluated to the empty string

- an element must have been added to the result tree without yet any child content (but
possibly with attached attributes and other namespaces) when this instruction is executed

Page 368 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Depiction of a complete node tree
Chapter 3 - XPath data model
Section 1 - XPath data model components

Consider the well-formed XML instance partlist.xml :
01 <?xml version="1.0"?>
02 <!--start-->
03 <part-list bin="78"><part nbr="A123">bolt</part>
04 <part nbr="B456">washer</part><warn level="1" type="max"/>
05 <!--end of parts--><?cursor blink under ?>
06 </part-list>

A summary of each of the types of nodes in this instance and their corresponding example
values is as follows (other columns related to expressions are explained later in this chapter):

Example value
(inside quotes)

Isolation
example

Node in isolationNode without
specificity

Node type

"bolt"partelementName*Element

"A123"@nbr@attributeName or
attribute::
attributeName

@* or
attribute::*

Attribute

"http://
www.w3.org

namespace::
xml

namespace::
prefix

namespace::*Namespace

/XML/1998
/namespace"

"blink under "processing-
instruction
('cursor')

processing-
instruction
(piTargetString)

processing-
instruction()

Processing In-
struction

"end of parts"N/AN/Acomment()Comment
"bolt"N/AN/Atext()Text
(not a string)
"boltN/AN/A/Document

(Root) washer

"

Page 94 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing document nodes
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

 Creating a document node :
01 <xsl:document validation=" declared-type-style"
02 type=" strict-using-named-type">
03 document-sequence-constructor
04 </xsl:document>

- validation= and type= are mutually exclusive and optional
- see Validating result tree nodes (page 186) for details on the attribute usage

- use this instruction to create a temporary tree variable or to constrain the result tree
- this instruction is not used as a replacement for <xsl:result-document>

- that is used to create a serialized result tree
- consider that a temporary tree of a text node could be written as:

01 <xsl:variable name="test">abc</xsl:variable>

this is not a string and when formally declared must be expressed as a temporary tree as
follows:
01 <xsl:variable name="test" as="document-node()">
02 <xsl:document>abc</xsl:document>
03 </xsl:variable>

- depicted for variables in Variable and parameter binding (page 223)

Page 369 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Depiction of a complete node tree (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

 XPath 2 offers a number of other forms of the tests
Example value
(inside quotes)

Isolation
example

Node in isolationNode without
specificity

Node type

"bolt"element(part)element
(elementName)

element()Element

N/AN/Aschema-element
(elementDeclaration)

N/AElement
(validated)

"A123"attribute(nbr)attribute
(attributeName)

attribute()Attribute

N/AN/Aschema-attribute
(attributeDeclaration)

N/AAttribute
(validated)

"blink under "processing-
instruction
(cursor)

processing- instruction
(piTargetName)

processing-
instruction()

Processing
Instruction

"boltdocument-nodedocument-nodedocument-node()Document
(Root) washer(element

(part-list))
(element-test)

"

Page 95 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing document nodes (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Also used for validating the result with an imported schema
- example with the result tree to validate the entire result

01 <xsl:template match="/">
02 <xsl:document validation="strict">
03 <xsl:apply-templates/>
04 </xsl:document>
05 </xsl:template>

Page 370 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Depiction of a complete node tree (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

It often helps when designing the transform to sketch out the node tree of the source:

Element

name="part"

value="bolt"

Root
 name=N/A

value="bolt

washer

"

Attribute

name=

"nbr"

value=

"A123"

Element

name=

"warn"

value=

""
 Comment

name=N/A

value=

"end of parts"

Processing

Instruction

name="cursor"

value=

"blink under "

Element
 name="part-list"

value="bolt

washer

"

Text

name=N/A

value="bolt"

Text

name=N/A

value="

"

Text

 name=N/A

value="

"

Element

name=

"part"

value=

"washer"

Text

name=

N/A

value=

"washer"

Text
 name=N/A

value="

"

Comment
 name=N/A

value= "start"

Attribute

name=

"nbr"

value=

"B456"

Attribute

name=

"type"

value=

"max"

Attribute

name="bin"

value="78"

Attribute

name=

"level"

value="3"

These materials use the following conventions when depicting node trees:

has a child node

has an

attribute node

has a

namespace node

Not depicted is the namespace node for the XML namespace. Such a node is attached to every
element in the instance:

Element

Namespace

name="xml"

value="http://www.w3.org/XML/1998/namespace"

Page 96 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing text nodes
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

- the expression is mandatory but the expression can calculate an empty string
- all items addressed are converted to strings (even text nodes) and the strings are separated

with a space

Adding text nodes :
01 <xsl:text> escaped-text</xsl:text>
02

03 <xsl:text disable-output-escaping="yes"> verbatim-text</xsl:text>

- <xsl:text> cannot have any sub-elements of any kind
- the XSLT processor is not obliged to respect disable-output-escaping="yes"
- disable-output-escaping="yes" can only be used for the text content of an element

being added to the result tree
- e.g. cannot be used within a result tree fragment variable assignment, or

<xsl:message> construct
- use case is for non-XML/non-HTML markup (e.g. ASP code)
- to emit HTML entities, declare and use XML entities as shown on page 215

Stylesheet tree no-operation instruction:
01 <xsl:for-each select="item"> <!--with new lines-->
02 (<xsl:value-of select="."/>)
03 </xsl:for-each>
04

05 <xsl:for-each select="item"> <!--without new lines-->
06 <xsl:text>(</xsl:text>
07 <xsl:value-of select="."/>
08 <xsl:text>)</xsl:text>
09 </xsl:for-each>
10

11 <xsl:for-each select="item"> <!--without new lines-->
12 <xsl:text/>(<xsl:value-of select="."/>)<xsl:text/>
13 </xsl:for-each>

- note above the use the empty text instruction to shape the non-white-space-only text
nodes of the stylesheet tree

- the instruction <xsl:text/> adds nothing to the result tree but impacts on the text nodes
of the stylesheet tree

Page 371 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Depiction of a complete node tree (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

The following is a report of the content of the example on page 94:
01 SHOWTREE - http://www.CraneSoftwrights.com/resources/
02 1 Comment: {start}
03 2 Element 'part-list':
04 2.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
05 2.A Attribute 'bin': {78}
06 2.1 Element 'part' (part-list):
07 2.1.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
08 2.1.A Attribute 'nbr': {A123}
09 2.1.1 Text (part-list,part): {bolt}
10 2.2 Text (part-list): {
11 }
12 2.3 Element 'part' (part-list):
13 2.3.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
14 2.3.A Attribute 'nbr': {B456}
15 2.3.1 Text (part-list,part): {washer}
16 2.4 Element 'warn' (part-list):
17 2.4.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
18 2.4.A Attribute 'level': {1}
19 2.4.B Attribute 'type': {max}
20 2.5 Text (part-list): {
21 }
22 2.6 Comment (part-list): {end of parts}
23 2.7 Proc. Inst. 'cursor' (part-list): {blink under }
24 2.8 Text (part-list): {
25 }

Note that the above transform is a free resource available from the given URL and is a useful
diagnostic tool to report a processor's view of an arbitrary XML document:

- when a transform does not behave as desired, it can help to see the nodes the processor
can see in an XML document in case a visual inspection of that document is misinterpreted
by the transform writer

Page 97 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Escaping text placed in the result tree
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

XML and HTML serialization ensures well-formed output
- characters sensitive to markup processing are protected
- processor can choose any method it wishes to ensure characters are escaped

- using a CDATA section <![CDATA[...]]>
- for processors other than XSLT 1.0, CDATA sections cannot be used except

as specified by the user
- using a built-in entity reference under processor (not transform) control

- any "<", "&" and ">" found in a text node can be emitted as < , & and
> respectively

- the HTML output method may recognize HTML built-in entity references
for non-ASCII characters

- using a numeric character reference under processor (not transform) control
- '<' can be serialized as '< ' or '< ' or '< '
- '&' can be serialized as '& ' or '& '
- '>' can be serialized as '> ' or '> ' or '> '
- characters outside the serialization encoding can be emitted in decimal or hex

- using a built-in or numeric character reference for attribute encoding based on
attribute delimiters under processor (not transform) control

- '" ' can be serialized as '" ' or '" ' or '" '
- " ' " can be serialized as '' ' or '' ' or '' '
- characters outside the serialization encoding can be emitted in decimal or hex

Stylesheets can only request the use of CDATA sections:
- <xsl:output cdata-section-elements=" white-space-separated-qnames"/>
- uses a single CDATA section for each element in most cases

- the sequence "]]> " in a text node, when be emitted in CDATA in XML, is as
follows to ensure the CDATA is not prematurely terminated:

- <![CDATA[]]]]><![CDATA[>]]>

Page 372 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Depiction of a complete node tree (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

An example including namespace nodes

Consider the well-formed instance namespace.xml that contains namespace declarations:
01 <?xml version="1.0"?>
02 <a>
03 <b xmlns:x="http://x">
04 <c xmlns:y="http://y">
05 <d x:p="x-p" y:q="y-q" r="r" xmlns="http://z"/>
06 </c>
07
08

Note in the instance that the r= attribute is not in any namespace; it is not in the default
namespace that the d element is in.

Page 98 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Escaping text placed in the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

 Using character maps is a declarative way of producing character representations
- see Character maps (page 199) for details

As a last resort can request no escaping
- if it is absolutely necessary to actually emit "<" or "&" from the result tree, the desire to

do so can be indicated as follows:
- <xsl:text disable-output-escaping="yes"> text</xsl:text>
- <xsl:value-of disable-output-escaping="yes" select=" expr"/>
- compare with Serializing result text (page 153)
- it is very easy to produce XML that is not well-formed, or HTML that makes references

to entities that do not exist; avoiding this technique ensures all output that is produced
is well formed

- note that a conforming XSLT processor is not required to support the disabling of output
escaping, so this technique is not guaranteed to be portable across all implementations

- can only be used for text generated for an element's content
- not for content of <xsl:attribute> , <xsl:comment> , or

<xsl:processing-instruction> instructions

Use case is only to put out sensitive markup characters not already produced by XSLT
- not to be used for emitting start and end tag syntax

- XSLT produces a node tree and all tags are emitted from node processing
- not to be used for emitting named character entities such as

- to emit HTML entities, declare and use XML entities as shown on page 215
- XSLT processors recognize valid Unicode characters and are required to emit these

using any well-formed syntax it chooses

An example use-case where this is required is the emission of ASP code embedded in an
HTML file:
01 <xsl:text disable-output-escaping="yes">
02 <% Method-Call() %></xsl:text>
03 <xsl:text disable-output-escaping="yes"><![CDATA[
04 <% Method-Call() %>]]></xsl:text>

Both of the above instructions produce the following result (provided the attribute is respected
by the processor):
01 <% Method-Call() %>

Page 373 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Depiction of a complete node tree (cont.)
Chapter 3 - XPath data model
Section 1 - XPath data model components

The following is a report of the content of the source node tree as generated by a processor,
revealing the replication of the namespace nodes:
01 SHOWTREE - http://www.CraneSoftwrights.com/resources/
02 1 Element 'a':
03 1.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
04 1.1 Text (a): {
05 }
06 1.2 Element 'b' (a):
07 1.2.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
08 1.2.II Namespace 'x': {http://x}
09 1.2.1 Text (a,b): {
10 }
11 1.2.2 Element 'c' (a,b):
12 1.2.2.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
13 1.2.2.II Namespace 'y': {http://y}
14 1.2.2.III Namespace 'x': {http://x}
15 1.2.2.1 Text (a,b,c): {
16 }
17 1.2.2.2 Element '{http://z}d' (a,b,c):
18 1.2.2.2.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
19 1.2.2.2.II Namespace: {http://z}
20 1.2.2.2.III Namespace 'y': {http://y}
21 1.2.2.2.IV Namespace 'x': {http://x}
22 1.2.2.2.A Attribute '{http://x}x:p': {x-p}
23 1.2.2.2.B Attribute '{http://y}y:q': {y-q}
24 1.2.2.2.C Attribute 'r': {r}
25 1.2.2.3 Text (a,b,c): {
26 }
27 1.2.3 Text (a,b): {
28 }
29 1.3 Text (a): {
30 }

Note how there are two namespaces for b on lines 7 and 8 and three namespaces for c on lines
12 through 14. Every element has the xml namespace node and each of b, c , and d have the
namespace nodes of all ancestral elements.

Page 99 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Escaping text placed in the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

For example, the following instruction is often found in stylesheets because it can be used to
coerce the XSLT processor to emit " " in order to reference the entity definition built-in
to HTML, but it only works when serializing the result tree into markup syntax:
01 <xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>

- this technique should not be used because the result tree does not include an entity
reference, just non-escaped text

- the two ways to accomplish this in a portable fashion supported by all conforming XSLT
processors that support the HTML output method are:

- to define the entity nbsp as and reference the entity in the stylesheet
- to reference the character entity directly in the stylesheet
- see Internal general entities (page 215)

- in both the above cases, the character is seen to be a non-ASCII character and is
recognized by the HTML output method as a known built-in entity, and emitted as the
entity reference

Remember that the input source file still always has to be well-formed XML, hence the
stylesheet must escape the characters in the input that are not going to be escaped in the output
by:

- using built-in or declared character entity references
- using numeric character references
- using CDATA sections

Page 374 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Expressions
Chapter 3 - XPath data model
Section 2 - XPath expressions

XPath expressions return items for transformations to act on
- comment

- annotating an expression for the human reader
- simple tuple creation expression

- basing an expression's return value on the creation of a list of tuples
- conditional expression

- basing an expression's return value on an alternation of other values
- data type expressions

- specifying an expression's value directly or as a calculation

Core data types used in expressions:
- Boolean values

- the traditional true and false values used in logical arithmetic
- number values

- double-precision floating point numbers as defined by IEEE
- string values

- sequences of UCS characters represented by character codes
- nodes from the source tree (location paths made up of location steps)

- location paths specify sets of nodes (primarily treated in document order)
- location steps specify nodes from an axis (primarily treated in proximity order)
- nodes from the stylesheet can be accessed only if the stylesheet file is opened as a

source tree
- nodes cannot be addressed from the result tree in any way

 XPath 2.0 extensions to XPath 1.0
- W3C Schema data types allowed for atomic values

- see summary of type hierarchy on page 73
- generalizes both nodes and atomic values as "items"
- introduces the concept of a sequence of items

- sequences are flat in that there are no embedded sequences within sequences
- a sequence type (see page 74) is a constraint on the sequence values
- a data type suffixed by a Kleene cardinality operator

- no suffix infers one and only one of the item
- "?" suffix infers zero or one of the item
- "* " suffix infers zero or more of the item
- "+" suffix infers one or more of the item

Page 100 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Escaping text placed in the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Consider the need to produce the following result:
01 <html>
02 <body>
03 <p>This is an nbsp reference: ' '.</p>
04 </body>
05 </html>

The XSLT script disable.xsl disables the output escaping method to emit " ":
01 <?xml version="1.0"?><!--disable.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:output method="html" indent="yes"/>
07

08 <xsl:template match="/"> <!--root rule-->
09 <html>
10 <body>
11 <p>
12 <xsl:text>This is an nbsp reference: '</xsl:text>
13 <xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>
14 <xsl:text>'.</xsl:text>
15 </p>
16 </body>
17 </html>
18 </xsl:template>
19

20 </xsl:stylesheet>

Page 375 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Expressions (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

 XSLT 1.0 extends XPath 1.0 data types and expressions to include:
- fragments of the result tree

- packages of result tree nodes representing information that can be added to the
result tree on demand

- one can only copy nodes of a result tree fragment to the result tree or to another
result tree fragment

- write-only during creation
- one-pass creation of the result tree fragment

- limited read-only after creation
- returns the concatenation of all of the text nodes found therein

- can be copied fully to the result tree after creation
- any number of times

- one cannot push or pull nodes of a result tree fragment

 XPath 2.0 extends XPath 1.0 data types and expressions to include:
- arbitrary temporary trees (replaces XSLT 1.0 fragments of the result tree)

- no concept of "result tree fragment" in XSLT 2.0
- write-only during creation

- one-pass creation of the temporary tree
- fully read-only after creation

- one can push or pull nodes of a temporary tree just as with a source tree
- can be copied fully to the result tree after creation

- any number of times
- common in two-pass algorithms to create a temporary tree full of intermediate

nodes and then push or pull the intermediate nodes in the algorithm to create the
final result tree

Page 101 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Escaping text placed in the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

The XSLT script disable-not.xsl approaches the same problem without circumventing
the protection available in XSLT:
01 <?xml version="1.0"?><!--disable-not.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nbsp " "> <!--declare HTML value of the entity-->
05]>
06 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
07 version="1.0">
08

09 <xsl:output method="html" indent="yes"/>
10

11 <xsl:template match="/"> <!--root rule-->
12 <html>
13 <body>
14 <p>
15 <xsl:text>This is an nbsp reference: ' '.</xsl:text>
16 </p>
17 </body>
18 </html>
19 </xsl:template>
20

21 </xsl:stylesheet>

Note how the identical output is produced by using an entity reference in the above stylesheet:
- the reference points to the entity declaration in the stylesheet

- this could have been included as one of a set of declarations for the entire set utilized
by HTML

- the XML processor in the XSLT processor translates the reference into the entity content
and only the character is stored in the stylesheet tree (not the entity reference)

- the XSLT script adds the character to the result tree
- the HTML output method recognizes the character as matching that value for

the entity and emits the entity reference instead
- defined only for the HTML output method
- not recognized by other output methods

Page 376 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 2 comment expression
Chapter 3 - XPath data model
Section 2 - XPath expressions

 Comments in an XPath 2.0 expression:
- delimiters "(: " and ":) "
- comments are removed from an expression before evaluation and can play no role in the

evaluation itself
01 <xsl:template match="this (: missing? :)|that (: always there :)">

- every XPath expression has to return something and cannot be an empty string after
comments have been removed

- the "() " expression returns a sequence of no items

Comments can be nested
- but must be properly balanced (a corresponding end sequence after every start sequence)
- unlike XML comments which cannot be nested

Page 102 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Escaping text placed in the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

It may still be necessary to take advantage of this approach:
- to solve problems not solved in a well-behaved fashion for the current implementation

of XSLT
- for a processor that implements output escaping while not supporting emitting the

document type declaration
- to deliver packages of non-well-formed markup from a server process to a browser

parsing the output information as markup (e.g. from a database of HTML fragments)

During the processing of the root node (typically, but not necessarily), a block of non-escaped
text can be emitted to produce the document type declaration, as in the following example:

- version 1.0 of XML doesn't support the definition of the output internal declaration subset
of the instance

- the correct method would be to use doctype-public= or doctype-system= , but these
may not be supported by the XSLT processor

- if the internal declaration subset is needed, one cannot use these methods since the
declaration is ended in order to correctly emit the document element

Page 377 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 2 tuple expression
Chapter 3 - XPath data model
Section 2 - XPath expressions

 XPath 2.0 includes an operation on a list of tuples of items ("tuple list")
- for variable-singleton-bindings return result-tuple-expression
- a tuple is a set of values treated as a collection

- one can work on a set or sequence of tuples
- a standalone expression can be a specified operation on a set of tuples comprised of

addressed nodes or items
- one variable binding for each member of the tuple

- the scope of each variable is the following tuple declarations and the return
expression

- one result is generated per tuple
- the result itself may be a sequence of multiple items

- the following returns the sequence "5, 6, 6, 7, 7, 8 " from a two-tuple of variables
- for $x in (1, 2, 3), $y in (4, 5) return $x + $y

- the following returns the sequence "5, 4, 6, 6, 7, 8 " from a two-tuple of variables
- for $x in (1, 2, 3), $y in (4, $x+2) return $x + $y
- latter variable bindings can reference earlier variable bindings

- the following returns a sequence of author strings and book title strings from a one-tuple
- for $each in distinct-values($books/author)

 return ($each,
 $books[author=$each]/title/string())

- the author string is included in the sequence once, and all of their titles follows,
followed by the next author

- the following returns a sequence of author nodes and title nodes from a one-tuple
- for $each in distinct-values($books/author)

 return ($books[author=$each][1]/author,
 $books[author=$each]/title)

- the author node is included in the sequence once, and all of their title nodes follows,
followed by the next author

Page 103 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Escaping text placed in the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 1 - Result tree node instantiation

Consider the following stylesheet to emit a complete document type declaration by disabling
the output escaping on a text node in which the entire prologue is written using a CDATA
section to reduce the amount of per-character escaping required in the stylesheet:
01 <?xml version="1.0"?><!--disable-decl.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"/>
07

08 <xsl:template match="/"> <!--root rule-->
09 <xsl:text disable-output-escaping="yes"><![CDATA[
10 <!DOCTYPE test [
11 <!ENTITY nbsp " ">
12]>]]></xsl:text>
13 <test>
14 <xsl:text>This is an nbsp reference: '</xsl:text>
15 <xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>
16 <xsl:text>'.</xsl:text>
17 </test>
18 </xsl:template>
19

20 </xsl:stylesheet>

Page 378 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 2 tuple expression (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Very common to create a list of 1-tuples of nodes for repositioning
- for $n in node-set-address-or-variable

 return sequence-of-nodes-or-values-using-each-$n-singleton
- $n represents a new position in the node tree
- the return sequence of nodes is a set of new positions based on each $n

From the new positions a sequence of values can be returned based on each $n

- the following returns a sequence of comma-separated names, where the names are created
from the given name and surname children of a list of 1-tuples of name nodes

- string-join(for $contact in $org/contacts/name
 return concat($contact/first,' ',$contact/last),
 ', ')

- the return of the for has the same cardinality as the tuple list
- each string returned in the return sequence is the given name and surname separated

by a single space
- the string-join() returns a single string with that returned sequence of strings

separated by a comma and space

Page 104 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Copying arbitrary nodes and all of their descendants (deep copy):
01 <xsl:copy-of select=" result-tree-fragment-or-temp-tree-expression"/>

- fragment is added to the result tree verbatim
01 <xsl:copy-of select=" node-set-expression"/>

- nodes from source tree are added to the result tree in document order
- nodes from a temporary tree are added to the result tree in document order
- template rules are not triggered (this is not a "push")

01 <xsl:copy-of select=" other-expression"/>

- string value is added as in <xsl:value-of>

Copying the current node (shallow copy):
01 <xsl:copy>
02 optional-sequence-constructor
03 </xsl:copy>

- copies the current node (type and, if named, name) to the result node tree
- the type or name of the source node need not be known
- sub-elements and attributes from the source node tree are not automatically copied

- any content copying must be explicitly requested in the stylesheet
01 <xsl:copy use-attribute-sets=" white-space-separated-qnames">
02 optional-sequence-constructor
03 </xsl:copy>

- copies the current node and adds sets of attributes along the way

Page 379 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 2 conditional expression
Chapter 3 - XPath data model
Section 2 - XPath expressions

 XPath 2.0 includes standalone conditional expressions
- an expression can be an if-then-else clause where both sub-clauses are mandatory
- the following returns a number that is either a result of a calculation or a scalar

- if ($e/@weight) then $e/@weight * 100. else 100.
- the expression gives a full weight to a question without a weight attribute

- a standalone expression cannot be used as an operand in another expression
- unless it is made standalone using parentheses, as in this example where one might

want to invert the weight value calculated above
- the following is not allowed:

- 100. - if ($e/@weight) then $e/@weight * 100. else 100.

- the following is allowed because the if expression is now standalone:
- 100. - (if ($e/@weight) then $e/@weight * 100. else 100.)

Both the then and else clauses are required
- use "() " when no behavior desired
- e.g. if ($e/@answer='y') then 'Found!' else ()

Combining addresses, tuples and conditionals makes a complete query
- acting on the conditional result of a tuple expression that includes an address
- the following returns a sequence of numbers

- for $each in id('start')//question[@answer='y']
 return if ($each/@weight) then $each/@weight * 100.
 else 100.

- if there are no questions with an answer attribute with the value "y" then the return
is the empty sequence and no comparisons are performed

- otherwise the return is a sequence of numbers, one for each addressed question,
being either a calculation or a scalar value

- suitable as an argument for a function such as avg()

Page 105 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Additional features available in XSLT 2.0 for <xsl:copy-of/> and <xsl:copy>

- validation=" declared-type-style" or type=" strict-using-named-type"
- using one of these mutually-exclusive attributes validates the copied node against

either a global schema declaration or a specified type
- style values are "strict ", "lax ", "preserve " and "strip "

- see Validating result tree nodes (page 186) for details
- copy-namespaces=" yes-or-no-default-yes"

- default value is "yes " and applies only to elements
- the value "no" will prevent unneeded namespace nodes attached to the source

element from being copied to the target element
- illustrated on page 137

- in the diagram this is the copying of unused namespace nodes from node 3
when creating node 3'

- inherit-namespaces=" yes-or-no-default-yes"
- for <xsl:copy> and literal result elements only
- e.g. <l-r-e xsl:inherit-namespaces="no"> ...nodes...</ l-r-e>
- applies only to the future children in the result tree of the element being added
- the value "yes " will attach the target element's namespace nodes to its element

children
- descendents will need namespace declarations for all namespace nodes not attached

or found in the ancestry
- may trigger xmlns="" (or xmlns: prefix="" for XML 1.1) in child elements
- illustrated on page 137

- in the diagram this is the copying of unused namespace nodes from node A
when creating node 3'

- inheriting nodes from the operation tree happens after copying nodes from the
source tree

Page 380 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath expression types
Chapter 3 - XPath data model
Section 2 - XPath expressions

XPath expressions can be value expressions or address expressions

Value expressions are used for atomic types
- explicit literal values (a.k.a. "primary expressions")

- e.g. numbers
- e.g. strings

- explicit calculations
- e.g. $base * .85
- e.g. $pretax * (1 + ancestor::order/@tax)

- evaluating the value of some function
- e.g.: sum(sequence-expression)

- find all the items specified in the sequence expression
- convert the string value of each node to a number
- sum the numbers into a total
- return the number total as the result of the sum() expression evaluation

- e.g.: count(sequence-expression)
- find all the items specified in the sequence expression
- return the count of items as the result of the count() expression evaluation

Addresses are used for identifying nodes or values derived from nodes
- a "path" expression is set of "step" expressions, separated by "/ "

- each step walks around a node tree
- the rightmost step describes the sequence of nodes or values
- steps to the left of the rightmost step describe the context of the nodes or values

- the completed evaluation of the expression returns information to be processed
- a "set of nodes (locations)" is returned for a path ending with a node expression
- a "sequence of values" is returned for a path ending with a value expression

- each value is calculated evaluating the expression from the location described
by the location path

Page 106 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Sample source data and stylesheet illustrating the processing model on page 137:
01 <sns1:s1 xmlns:sns1="sns1" xmlns:sns2="sns2" xmlns="sdef">
02 <sns1:s2/>
03 <sns1:s3>
04 <sns1:s4 ons1:new1="z" xmlns:ons1="ons1"/>
05 <sns1:s5 sns2:new2="y"/>
06 </sns1:s3>
07 </sns1:s1>

01 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
02 xmlns:sns1="sns1" exclude-result-prefixes="sns1"
03 version="2.0">
04

05 <xsl:output indent="yes" method="xml" version="1.0"/>
06

07 <xsl:template match="/">
08
09
10 <xsl:copy-of select="doc('inherit-namespaces.xml')//sns1:s3"
11 copy-namespaces="yes"/>
12 <d/>
13
14 </xsl:template>
15

16 </xsl:stylesheet>

Page 381 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath expression types (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Location path expressions specify sets of nodes for processing or for matching
- selecting a set of nodes from the source tree or XPath 2 temporary tree

- using an address to identify nodes from the tree to obtain for processing
- using a location path expression in XSLT

- e.g.: <xsl:for-each select="part-name">...</xsl:for-each>
- use the given template for each of the part-name children

- e.g.: <xsl:apply-templates select="part-name/@*"/>
- find the templates for all of the attributes of all part-name children

- e.g.: <xsl:apply-templates select="@part-nbr | @bin"/>
- find the template for the attribute part-nbr and the attribute bin in

whatever arbitrary order the XML processor records the attribute in the
XPath node tree

- e.g.: <xsl:apply-templates select="@part-nbr , @bin"/>
- find the template for the attribute part-nbr first and then the attribute

bin , in that order regardless of the order in the XPath data model
- passing nodes to a function acting on a node set

- specifying a set of matching nodes in XSLT
- using an address to identify nodes being pushed from the tree to catch for processing
- using a subset of location path expressions called "patterns"

- e.g.: <xsl:template match="@part-nbr">
- specify the template for the part-nbr attribute of any element

- e.g.: <xsl:template match="part-name/@part-nbr">
- specify the template for the part-nbr attribute with a part-name

element parent
- e.g.: <xsl:template match="@rack | @bin">

- specify the template for either the rack attribute or the bin attribute of
any element

- used wherever nodes are to be matched
- used in node counting, key collection membership and when choosing between

alternative template rules

Page 107 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Resulting combinations of copying and inheriting namespaces on page 137:
01 Not copying namespaces, not inheriting namespaces
02
03
04 <sns1:s3 xmlns:sns1="sns1" xmlns="">
05 <sns1:s4 xmlns:ons1="ons1" ons1:new1="z"/>
06 <sns1:s5 xmlns:sns2="sns2" sns2:new2="y"/>
07 ...
08 Not copying namespaces, inheriting namespaces
09 <?xml version="1.0" encoding="UTF-8"?>
10
11
12 <sns1:s3 xmlns:sns1="sns1">
13 <sns1:s4 ons1:new1="z"/>
14 <sns1:s5 xmlns:sns2="sns2" sns2:new2="y"/>
15 ...
16 Copying namespaces, not inheriting namespaces
17 <?xml version="1.0" encoding="UTF-8"?>
18
19
20 <sns1:s3 xmlns:sns1="sns1" xmlns:sns2="sns2" xmlns="sdef">
21 <sns1:s4 xmlns:ons1="ons1" ons1:new1="z"/>
22 <sns1:s5 sns2:new2="y"/>
23 ...
24 Copying namespaces, inheriting namespaces
25 <?xml version="1.0" encoding="UTF-8"?>
26
27
28 <sns1:s3 xmlns:sns1="sns1" xmlns:sns2="sns2" xmlns="sdef">
29 <sns1:s4 ons1:new1="z"/>
30 <sns1:s5 sns2:new2="y"/>
31 ...

- note the need for the redundant ons1 namespace declaration when not inheriting
namespace nodes

- note the need for the sns2 namespace on s5' when not copied onto s3'

Page 382 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Address evaluation context
Chapter 3 - XPath data model
Section 2 - XPath expressions

The "current node list" can contain only a set of nodes from the source node tree
- all evaluation is done with the focus being a source tree node and nothing else
- a location path address of nodes has no duplicate nodes and all nodes are acted on in

document order

The "context list" can contain a sequence of any information item defined in XPath 2
- evaluation is done with the focus being the context item of any data type
- backwards compatible when using a location path address of nodes (no duplicates and

document order)
- an arbitrary sequence may contain duplicates and may address nodes in an arbitrary order

with separate location path addresses
- each address addresses a set of nodes in document order

The context list is a critically important concept in XPath
- the context list is the current "collection" of items being processed, having been specified

or addressed for processing
- the processing of the context list cannot be interrupted
- if only a subset of items needs to be processed, then only address that subset

- changed in XPath through each step evaluation of a multi-step location path expression
- addressed and refined as each intermediate result in between two location steps of

a location path
- the result of specifying a node test and filtering by the predicates on each of the

nodes from the previous step in the path
- "leftNodes/ right" is "for $n in leftNodes return right($n)"

- supersedes previous context list until finished being processed
- when done, current item restores to interrupted position in previous context list

- it is not possible to halt processing of the context list part way
- all members of the context list are processed in sequence

- exposed in XSLT for the duration of every instruction with a select= attribute
- set throughout the scope for the template in the XSLT instruction
- <xsl:apply-templates> - pushing source tree nodes and, in XSLT 2, temporary

tree nodes
- <xsl:for-each> - pulling source tree nodes and, in XSLT 2, atomic values and

temporary tree nodes

Page 108 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Examples contrasting the copying of nodes

An example code fragment to copy only the given element and its attributes, but to process
its content without blindly copying the content, is as follows:
01 <xsl:template match="this|that|other">
02 <xsl:copy> <!--copy whatever the matched node is-->
03 <xsl:copy-of select="@*"/> <!--copy attached attr nodes-->
04 <xsl:apply-templates/> <!--push child nodes-->
05 </xsl:copy>
06 </xsl:template>

An example code fragment to copy the entire given element and all its content:
01 <xsl:template match="this|that|other">
02 <xsl:copy-of select="."/> <!--copy the entire current node-->
03 </xsl:template>

Contrast this to the execution of <xsl:value-of select="."> on a node of the source node
tree that adds to the result tree the concatenation of descendent text nodes as a string of text.

Page 383 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Address evaluation context (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Information available regarding the context list:
- the information changes when an XPath location step or an XSLT instruction selects

nodes or atomic values

last() returns the current context list size
- the position number of the last context item within the context list
- the value returned does not change for the list because the list size can never change

once defined

position() returns the current context item's 1-origin position within the context list
- the position number of the current context item within the context list
- the first position is numbered 1, not zero as in many programming languages
- as the processor moves from one item to the next, the position value monotonically

increases by one

. returns the current context item of the context list
- only one of the items in the context list is current at any time
- the processor moves from one item to the next, starting at the first and ending at the last

XPath exposes all three properties at each step of evaluation
- redefined at each step as the result of the previous step
- the previous step must be a set of nodes for there to be a following step

XSLT exposes all three properties for use within instruction bodies
- the context list is set with every select= for the instruction duration

- end result of the XPath expression's last step's evaluation
- always delivered to XSLT in document order

- restored to the previous definition of all three values after having processed every member
in the list

- no definition of ". " at the start of a function
- note that "/ " is defined only when ". " is a node

Page 109 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Diagnostic stylesheet example
01 <?xml version="1.0"?><!--copyofall.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:template match="/"> <!--entire copy of root node-->
07 <xsl:copy-of select="."/>
08 </xsl:template>
09

10 </xsl:stylesheet>

- copyofall.xsl will copy the entire input XML to the output:
- recall the physical entity structure of the input in Extensible Markup Language

(XML) (page 9)
- the entire physical structure of the stylesheet is written into the output as a single

file
- all external XML markup fragments consolidated into a single file
- imported and included files are not consolidated using this technique

- all general entities are resolved, thereby revealing what the XSLT processor is
seeing as the value of entities that may be parameterized through marked sections

Modification for "pretty-print" of an XML file:
- <xsl:output indent="yes"/>
- when an XML file is not indented it can be very difficult to find information

- this addition to the stylesheet serializes the result tree indented
- helps to find errors that are listed by line number when there are concatenated lines

in the file

Useful for a performance diagnostic
- timing this stylesheet on data determines the cost of building the input tree and serializing

the result tree
- comparing the timing of this stylesheet on your data with the timing of your stylesheet

on your data reveals the approximate amount of time being spent in your stylesheet
- comparing two versions of your stylesheet for performance should be comparing the

differences between each stylesheet and the base cost of tree building and serialization

Page 384 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Address evaluation context (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

The XPath context list has a number of components:
- context list

- the collection of items created by a select= attribute
- context item

- a node in the tree
- an atomic value

- context position
- a non-zero positive whole number

- context size
- the length of the context list
- a non-zero positive whole number greater than or equal to the context position

- variable bindings
- used when variables are referenced

- function library
- used when functions are called

- namespace declarations
- used when namespace prefixes are specified

Page 110 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Identity transform with modifications

Very common to need to make only very small changes to an XML document
- an identity transform will reconstruct in the result tree all of an XML source tree in a

piecemeal fashion
- matching template rules for specific nodes allow one to override the copy

In the following identity.xsl example, all <c> elements are changed and e= attributes are
removed:
01 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
02 version="1.0">
03

04 <xsl:template match="@*|node()"> <!--identity transform-->
05 <xsl:copy>
06 <xsl:apply-templates select="@*|node()"/>
07 </xsl:copy>
08 </xsl:template>
09

10 <!--specializations-->
11

12 <xsl:template match="a"> <!--change the a element; ignore attrs-->
13 <new-A-here>
14 <xsl:apply-templates/>
15 </new-A-here>
16 </xsl:template>
17

18 <xsl:template match="@b"/> <!--remove b attributes-->
19

20 </xsl:stylesheet>

A more general identity template:
- typically used in a larger stylesheet with more stylesheet logic
- note how parameters are not passed with this template, as with the built-in templates

- using tunnel parameters will ensure passed values are accessible to called templates
01 <xsl:template match="@*|node()" mode="#all">
02 <xsl:copy>
03 <xsl:apply-templates select="@*,node()" mode="#current"/>
04 </xsl:copy>
05 </xsl:template>

Page 385 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location path expression structure
Chapter 3 - XPath data model
Section 2 - XPath expressions

Location path expressions address nodes by the relationships of the nodes to each other
- first step in the location path is significant

- arbitrary location from well-defined position
- positions usable in pattern expressions

- begins with a function returning a node-set from a source node tree
- id()
- key()

- positions not usable in pattern expressions
- begins with any other function returning a node-set

- function()
- begins with a node-set variable

- $node-set-variable-qname
- begins with a parenthesized union or sequence expression

- (node-set-expression)
- (node-set-expression | node-set-expression)
- (node-set-expression , node-set-expression)

- absolute location from root of tree (document node)
- begins with "/ "
- may be followed with a relative location expression
- e.g. /a/b

- when selecting: "the b children of the a document element"
- when matching: "any b child of the a document element"

- if " . " is a node, then "/ " is the top of that node's tree
- no definition of "/ " when ". " is undefined or is an atomic item
- the tree being accessed is an important nuance when dealing with multiple

source node trees
- the transform can store the root of the initial source node tree in a

top-level variable in order to always have access to the starting tree
- relative location from current position

- does not begin with "/ "
- node relationships evaluated relative to the exposed current context item
- e.g. a/b

- when selecting: "the b children of the a children of the current node"
- when matching: "any b child of any a element"

Page 111 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Acting on this data:
01 <test>
02 a content
03 <b b="test">b content
04 <c c="test">c content</c>
05 </test>

The example complete stylesheet produces this result where only the specialized template
rules have made a change:
01 <?xml version="1.0" encoding="utf-8"?><test>
02 <new-A-here>a content</new-A-here>
03 b content
04 <c c="test">c content</c>
05 </test>

Page 386 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location path expression structure (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Location path expressions (cont.)
- multiple steps in a path are separated using "/ " after steps returning nodes

- "leftNodes/ right" is "for $n in leftNodes return right($n)"
- a "/ " can only follow an expression returning nodes
- "/ " returns the union of evaluating each node on the left-hand side with the

result of the expression on the right-hand side with each node
- the last step can return a value of any data type
- "a/b/c " evaluates as "(a/b)/c "

- steps in a location path used in a selection are evaluated left to right
- one step followed by the next step to the right
- each step refines the node-set based on specified criteria
- the nodes being selected are the right-most (last) nodes in the path

- steps in a location path used in a match pattern are evaluated right to left
- one step in the context of the next step to the left
- each step narrows the context in the ancestry
- the node being matched is the right-most (first) node in the path

- right-most step is what is being addressed
- steps to the left are only the context of the right-most step

- recall examples on page 107
- a location path other than "/ " cannot end with "/ "

- every "/ " must be followed with nodes or values (not a mixture)
- consider max(step/(@repair*1.25,+@replace)[1])

- the "+@replace " atomizes the attribute node into an atomic value
- the "[1] " ensures @replace is used only when @repair is absent

- very flexible combinations of steps available for selecting (not matching)
- because any expression can be used in any step
- e.g. "a/(b,c)/d " evaluates as "a/b/d,a/c/d "
- e.g. "a/*/name(.) "

- applies the name function to each child node of child a, returning a sequence
of strings

- e.g. "a/*/@idref/id(.,$tree)/name(.) "
- applies the name function to each node returned by passing the idref attribute

of each child node of child a to id() , returning a sequence of strings
- note this example is no different than writing "id(a/*/@idref)/name(.) "

- it is not an error to ask for something that isn't there
- a syntactically valid expression that addresses a node that does not exist returns

the empty set
- a schema-aware transformation can detect misspelled names and names in

unexpected contexts when the context is known

Page 112 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Tweaking importable stylesheet example
- copyall.xsl will copy the entire input XML to the output providing for customization:

- when imported into another stylesheet, the importing stylesheet can specialize the
behavior for specific node template rules

- where it is necessary to copy most of a file but change only a few items, this script
can be a helpful shell within which to write the customizations

01 <?xml version="1.0"?><!--copyall.xsl-->
02 <xsl:stylesheet
03 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 xmlns:copyall="http://www.CraneSoftwrights.com/ns/copyall"
05 exclude-result-prefixes="copyall"
06 version="1.0">
07

08 <!--use the following to copy all of the content of a node-->
09

10 <xsl:template name="copyall:copy-content">
11 <xsl:apply-templates
12 select="@*|processing-instruction()|comment()|*|text()"/>
13 </xsl:template>
14

15 <!--default behaviours for all nodes-->
16

17 <xsl:template match="/|
18 processing-instruction()|comment()|*|@*|text()">
19 <xsl:copy>
20 <xsl:call-template name="copyall:copy-content"/>
21 </xsl:copy>
22 </xsl:template>
23

24 </xsl:stylesheet>

Page 387 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location path expression structure (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Location path expressions (cont.)
- a single expression can be the union of multiple node expressions

- complete location expressions separated with "| ", e.g. "$a | $b "
- logical or for union of node-sets (not logical and for intersection)
- XSLT behavior "feels" different based on where the operator is being used

- acts like the natural language "or" (choice) when performing pattern
matching

- match="a | b" matches element nodes named "a" or element
nodes named "b"

- acts like the natural language "and" (aggregate) when performing node
selection for evaluation

- select="a | b" selects child element nodes named "a" and child
element nodes named "b"

- any duplicate nodes addressed by the two expressions are
reduced to a single copy

- the items are acted on in document order
- the "union " keyword is allowed as in "$a union $b "
- described in detail on slide 307

- a single expression can be the intersection of multiple node expressions
- complete location expressions separated with "intersect "
- "$a intersect $b " returns those nodes in $a that are also in $b
- not allowed in a match= attribute

- a single expression can be the difference of multiple node expressions
- complete location expressions separated with "except "
- "$a except $b " returns those nodes in $a that are not in $b
- not allowed in a match= attribute

- a single expression can be the sequence of multiple item expressions
- not allowed in a match= attribute
- complete location expressions separated with ", "

- arguments evaluated and returned in sequence order as in "$a , $b "
- any duplicate nodes addressed by the two operands are acted on as many

times as found in sequence
- any duplicates found in any one of the operands in the expression

are ignored
- the items are acted on in sequence order

- sequences expressed as being nested are flattened
- "(p,(q,r),s) " is interpreted as "(p,q,r,s) "
- nested empty sequences are removed
- "((),p) " is interpreted as "(p) "

Page 113 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Importing the copyall.xsl stylesheet on requires the declaration and exclusion of the
stylesheet's namespace:
01 <?xml version="1.0"?><!--copyalltest.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training-->
03 <xsl:stylesheet
04 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 xmlns:copystuff="http://www.CraneSoftwrights.com/ns/copyall"
06 exclude-result-prefixes="copystuff"
07 version="1.0">
08

09 <xsl:import href="copyall.xsl"/>
10

11 <xsl:template match="b"> <!--rename an element -->
12 <new-b>
13 <xsl:call-template name="copystuff:copy-content"/>
14 </new-b>
15 </xsl:template>
16

17 <xsl:template match="d"> <!--redefine an element -->
18 <new-d>New d-value here</new-d>
19 </xsl:template>
20

21 <xsl:template match="@a"> <!--rename an attribute -->
22 <xsl:attribute name="new-a">
23 <xsl:value-of select="."/> <!--this copies the content-->
24 </xsl:attribute>
25 </xsl:template>
26

27 <xsl:template match="@c"> <!--redefine an attribute -->
28 <xsl:attribute name="{name(.)}">
29 <xsl:text>new-c</xsl:text>
30 </xsl:attribute>
31 </xsl:template>
32

33 <xsl:template match="f|@g"/><!--remove an element or attribute-->
34

35 </xsl:stylesheet>

Note that it is only a convention that the namespace URI also be an addressable

Page 388 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location steps
Chapter 3 - XPath data model
Section 2 - XPath expressions

A step can be either a primary-based step or an axis-based step
- primary-based step is an arbitrary expression

- may act on the context item regardless of its data type
- returns zero or more source tree nodes
- returns zero or more items of any data type

- axis-based step is an address in a tree of nodes
- acts on the context item which must be a tree node
- returns zero or more tree nodes resulting from the step
- tree nodes must be source tree nodes
- tree nodes may be source tree nodes or temporary tree nodes

Second and subsequent steps allowed only if left-hand side of "/ " returns tree nodes
- the step is evaluated repeatedly, one node at a time, for each node on the left-hand side,

evaluating the right-hand side expression with that node treated as the current node
- "leftNodes/ right" is "for $n in leftNodes return right($n)"
- step result is the union of step evaluations for all left-hand-side nodes

 Second and subsequent steps must be an axis-based step
- a source tree node is always the input to the step

- result tree fragment nodes are not allowed as input to the step
- such steps can only produce source tree nodes as the output of the step

Any step can be a primary-based step or an axis-based step
- primary-based steps other than the last step must return nodes

- the last step can return nodes or atomic values
- whatever item output from the previous step is input to the current step
- the current step can produce any sequence of data type output as input to the next step
- powerful opportunity to map function calls against source tree nodes in a single expression

Page 114 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes to the result tree (cont.)
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Consider the following input instance with elements and attributes:
01 <?xml version="1.0"?>
02 <test>
03 a content
04 <b b="test">b content
05 <c c="test">c content</c>
06 <d d="test">d content</d>
07 <e e="test">e content</e>
08 <f f="test">f content</f>
09 <g g="test">g content</g>
10 </test>

The stylesheet above will produce the following output instance:
01 <?xml version="1.0" encoding="utf-8"?>
02 <test>
03 <a new-a="test">a content
04 <new-b b="test">b content</new-b>
05 <c c="new-c">c content</c>
06 <new-d>New d-value here</new-d>
07 <e e="test">e content</e>
08

09 <g>g content</g>
10 </test>

Page 389 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location steps (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Each primary-based location step in a location path is comprised of:

primary-expression
 [
predicate
][
 predicate
]

Primary expressions include:
- variable reference

- e.g. $runningValues
- parenthesized expression

- e.g. ($runningValues | *)
- this is the union of the nodes in $runningValues with the element children

of the current node
- any duplicates are removed and the result set is treated in document order

- function call
- e.g. id(@linkends)

- find referenced elements in the current tree
- e.g. xs:float(123)

- casting the double value 123 into a float value
- e.g. xs:date(schedule/startDate)

- casting the text value of the element into a date value

 Primary expressions also include only a few data types (see page 73):
- string literal

- e.g. "12340000" or '12340000'
- a string of characters, not a number

- integer literal (digits without a decimal point ". ")
- e.g. 12340000

- a whole number without any part
- decimal literal (digits with a single decimal point ". ")

- e.g. 12340000.
- a whole number that happens not to have a part, but it may have a part if

desired
- this example could be cast to an integer without error, but if it had a part that

would not be true
- double literal (decimal literal followed by "E-notation" for powers of 10)

- e.g. 12.34E6
- the same as 12340000. but with greater precision

- to get values of other types (W3C schema types or user types) use the casting function
call

Page 115 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Building result tree nodes with literal result
elements
Chapter 8 - Constructing the result tree
Section 2 - Copying nodes

Recall that elements in the stylesheet that are in templates and are not XSLT instructions are
called "literal result elements":

- when a literal result element is added to the result tree, it is copied as an element node
- any specified attributes are instantiated in the result tree after being interpreted as attribute

value templates

Literal result element XSLT attributes:
- allowed in addition to any result vocabulary attributes specified in the literal result

element
- where scoped, influence only descendants of the given literal result element

xsl:extension-element-prefixes=" white-space-separated-prefixes"

- to declare the namespace prefixes of element instructions available from the XSLT
processor (see The stylesheet document/container element (page 179))

- without which element from such prefixes are considered to be literal result elements
and not instructions

xsl:exclude-result-prefixes=" white-space-separated-prefixes"

- to inhibit the contingent creation of namespace nodes (see The stylesheet
document/container element (page 179))

- does not inhibit the required creation of namespace nodes
xsl:version=" numeric-version"

- to declare the specification level of XSLT required by the stylesheet instructions (see
The stylesheet document/container element (page 176))

xsl:use-attribute-sets=" white-space-separated-qnames"

- to add to the result element all attributes in a previously declared collection of attributes
xsl:inherit-namespaces=" yes-or-no-default-yes"

- the attached namespace nodes of the literal result element are not automatically attached
to the element's element children

Should not use the default namespace for the XSLT instruction namespace
- prevents the above attributes from being used in literal result elements
- attributes without namespace prefixes are in no namespace, not in the default namespace

Page 390 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location steps (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Each axis-based location step in a location path is comprised of:

axis
::
 nodetest
 [
predicate
][
 predicate
]

- an axis identifier
- indicating the direction from current node

- a node test
- filtering nodes by type and name

- zero or more predicates
- filtering nodes by qualifying expressions tested against each node

The current node list changes at and during every step evaluation

ax1
::
 nt1
[
pr1
][
 pr2
]/
 ax2
::
 nt2
[
pr3
][
 pr4
]

node list changes

relative expression evaluation

- changes at every node test by being set to the nodes being addressed along the axis
- changes after every predicate by eliminating the members that test false
- note in the diagram how the dotted lines indicate the relative addressing of the predicates

is to the nodes tested, and the nodes are relative to the nodes tested in the previous step
- note in the diagram how the solid lines indicate the setting of the node list to the nodes

being tested and that the node list changes with the application of each predicate
- the resulting node list contains the nodes of the type of the rightmost node test

For example, the following single location path has 4 steps:
- id(parent::*/@idref)/ancestor-or-self::frame

 /descendant::fig[caption]
 /@image

- recall the source tree has many parent, child and sibling relationships (page 72)
- arbitrary white space can be added to try to make location paths more legible
- the first step jumps to an arbitrary location based on the unique identifier of an element

being equal to the idref= attribute of the parent of the current node
- the second step moves up the hierarchy, if necessary, to the frame element
- the third step uses a predicate to filter from all descendent fig elements only those with

child caption elements
- the fourth step moves to the image attribute of each of the fig elements selected
- note that the expression uses some abbreviations described later in this chapter

Page 116 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

Adding a text node whose string value represents numbers to the result tree
- calculate the numeric result of an expression and render the text representation

- rounded to an whole number value
- reveal the ordinal position of a source node in various source tree contexts as a number
- behavior is based on the presence of the value= attribute

Non-source-tree-oriented when using value= :
- the context is the current node list

- the only time the context for <xsl:number/> is the current node list
- useful when <xsl:value-of select=" expression"> rendering as simple floating

point numbers is insufficient
- <xsl:number value=" arbitrary-expression" format=" token-AVT"/>

- render the calculated rounded whole number value of the expression
- <xsl:number value="position()" format="i"/>

- the position of the current node within the current node list
- formatted in lower-case roman numerals

Typical source-tree-oriented use when not using value= :
- processor-calculated "identification of quantity"

- declarative invocation supplants the need to algorithmically implement counting
in the stylesheet

- the context is the current node in the source node tree
- <xsl:number/>

- the position of the current node within like-named source tree sibling nodes

Page 391 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Axes
Chapter 3 - XPath data model
Section 2 - XPath expressions

The use of a double colon ":: " immediately follows the use of an axis name.

Recall the components in the syntax of an axis-based location step:

axis
::
 nodetest
 [
predicate
][
 predicate
]

Two attachment axis directions from the current node, each in arbitrary order
- each processor can have a different order from any other processor
- attribute::

- attribute nodes (specified in element or defaulted in DTD)
- namespace::

- namespace nodes (specified in element or ancestral element)

 Namespace axis is deprecated in XPath 2.0
- no obligation for an implementation of XPath 2.0 to support the namespace axis
- a challenge for some information processing tasks where namespace management is

critical to the algorithm
- many developers will probably support this axis

 Namespace information available using XPath 2.0 functions that are not deprecated
- in-scope-prefixes() and namespace-uri-for-prefix()
- e.g. replacing name(namespace::*[.=$nsuri])
- with:
- in-scope-prefixes($node)[namespace-uri-for-prefix(.,$node)=$nsuri]

Page 117 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering (cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

Source tree context attributes available:
- all attributes are evaluated as attribute value templates
- select=" singleton-node-expr" , count=" union-match-pattern" ,

from=" union-match-pattern" , and level=" type" characterize the numbering

 select=" singleton-node-expr"

- repositions the current node to specify the context
count=" union-match-pattern"

- what nodes are being counted
- may be a simple pattern such as count="para"
- the current node itself or the first ancestral node that matches the pattern determines

which siblings are used
- union operator may be used

- to count nodes of different types or names in the calculation
- count="para|fig|list" indicates all element nodes named either "para ", "fig "

or "list " are to be considered in the calculation
- may be omitted for current node

- indicates only the type and (if named) name of the current node
from=" union-match-pattern"

- where in the hierarchy to count nodes from
- when counting amongst siblings, this pattern represents descendent nodes of a node

on the ancestor:: axis
- when counting across sibling boundaries, represents descendent and following

nodes of a node on the preceding:: and ancestor-or-self:: axes
- specifies the point below which counting begins
- may be omitted for the entire document

- indicates descendants of the root node (all nodes)

Page 392 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Axes (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Recall the components in the syntax of an axis-based location step:

axis
::
 nodetest
 [
predicate
][
 predicate
]

Eleven parent/child axis directions from current node, each in proximity order
- proximity order counts from the closest node as 1 and other nodes counting away from

current node
- document order for those nodes that start after the start of the current node
- reverse document order for those nodes that start before the start of the current

node
- a node tree depiction is included at the beginning of this chapter at The need for

abstractions (page 72)
- letters in examples below track the order of the nodes in the example for each axis

- self::
- the current node (J), shown as the thick-lined node

- child::
- immediate child nodes (K,L,O,P,Q)

- descendant::
- all descendent nodes (K,L,M,N,O,P,Q,R,S)

- descendant-or-self::
- the current node and its descendent nodes (J ,K,L,M,N,O,P,Q,R,S)

- parent::
- the parent node (F)
- this is the attaching element node for attached attribute and namespace nodes

- ancestor::
- the parent and its ancestors (F,A,root)

- ancestor-or-self::
- the current node and its ancestors (J ,F,A,root)

- preceding-sibling::
- all preceding nodes that are siblings of the current node (I ,G)

- following-sibling::
- all following nodes that are siblings of the current node (T,U)

- preceding::
- all nodes wholly contained before the start of the current node (I ,H,G,E,D,C,B)

- following::
- all nodes wholly contained after the end of the current node (T,U,V,W,X,Y,Z)

Page 118 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering (cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

Numbering attributes (cont.):
level="single"

- a single number counted amongst preceding siblings
- returns a single number of the count of the counted nodes
- starting at the closest ancestral node that is a descendant of the node matching the

from=" pattern" pattern
- amongst that node's preceding-sibling:: and self:: axes

- for example, numbering paragraphs when processing a paragraph:
- <xsl:number/>

- only the current node type is included in the count
- <xsl:number count="para|fig" level="single"/>

- both paragraphs and figures are included in the count
level="any"

- a single number counted amongst previous elements
- returns a single number of the count of all counted nodes
- amongst the current node's preceding:: and ancestor-or-self:: axes
- starting after the closest node matching from=" pattern"

- for example, numbering figures when processing a figure:
- <xsl:number level="any"/>

- document-scope figure number
- <xsl:number level="any" from="sect"/>

- section-scope figure number

Page 393 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node tests
Chapter 3 - XPath data model
Section 2 - XPath expressions

Recall the components in the syntax of an axis-based location step:

axis
::
 nodetest
 [
predicate
][
 predicate
]

The node test specifies what type and optionally which name of node to look for along the
direction of the axis specified or implied:

- a node by its node type along any axis
- processing-instruction()

- a processing instruction node (regardless of name)
- comment()

- a comment node
- text()

- a text node
- node()

- a node of any type (the wildcard)
- note that even though the above can be used on any axis, the attached axes will

never have processing-instruction, comment or text nodes
- a node by its node type along any axis

- document-node()
- a document node (regardless of the document element)

- element()
- an element node (regardless of its name or type)

- attribute()
- an attribute node (regardless of its name or type)

Page 119 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering (cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

level="multiple"

- a set of numbers (tumbler) counted at levels of ancestry
- returns a set of numbers of the counts of the counted nodes amongst their siblings

at different levels in the hierarchy
- at each level of document hierarchy along the ancestor-or-self:: axis up to

the descendant of the closest ancestral node matching the from=" pattern" pattern
- amongst each level ancestor's preceding:: and ancestor-or-self:: axes
- only at levels of ancestry where counted nodes exist (i.e. no tumbler value is ever

zero)
- for example, a chapter, section, subsection tumbler:

- <xsl:number count="chap|sect|subs" level="multiple"/>
- Chapter "1", Section "1.1", Subsection "1.1.1", Section "1.2", Subsection

"1.2.1", Chapter "2", Section "2.1", Subsection "2.1.1", Section "2.2", etc.
- <xsl:number count="sect|subs" from="chap" level="multiple"/>

- Chapter, Section "1", Subsection "1.1", Section "2", Subsection "2.1", Chapter,
Section "1", Subsection "1.1", Section "2", etc.

Page 394 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node tests (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Recall the components in the syntax of an axis-based location step:

axis
::
 nodetest
 [
predicate
][
 predicate
]

Node tests based on the node name:
- a name: processing-instruction(name-string-expression)

- a processing instruction node by its name
- processing-instruction(name)

- a name: name
- when using the namespace axis: a namespace node
- when using the attribute axis: an attribute node not in any namespace
- otherwise: an element node not in any namespace
- note that "not in any namespace" also means not in the default namespace

- a namespace-qualified name: prefix: name
- when using the namespace axis: empty node-set
- when using the attribute axis: an attribute node in the given prefix's namespace
- otherwise: an element node in the given prefix's namespace

- the wildcard: *
- when using the namespace axis: all namespace nodes
- when using the attribute axis: all attribute nodes
- otherwise: all element nodes in any namespace (including the default namespace)

- the namespace-qualified wildcard: prefix:*
- when using the namespace axis: empty node-set
- when using the attribute axis: all attribute nodes in the given prefix's namespace
- otherwise: all element nodes in the given prefix's namespace

- the wildcard namespace: *: name
- when using the namespace axis: empty node-set
- when using the attribute axis: all attribute nodes in the given prefix's namespace
- otherwise: all element nodes in any namespace with the given name

Page 120 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering (cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

In each of the <xsl:number/> illustrations, the context node is the deepest element node
named "e" (shown with a bolded border) and the values calculated differ only by the attributes
used:

An illustration of level="single" :
01 <xsl:number level="single" count="b"/>

a

c
b
 b
 b

b
 d
 b

e
 f

g
f
 b
 b

e

b

d

c

- the closest hierarchical element being counted, "b", is the parent of e
- only the found ancestor and its preceding siblings are considered in the calculation

- note the scope is the combination of nodes on the preceding-sibling:: and
self:: axes

- the text node "3" is added to the result tree
- without count= , only nodes of the current type and name would have been counted (in

this example "e"), adding the text node "1" to the result tree

Example of use of level="single" to indicate the number of the <module> elements from
the ancestral <course> element to the current location in the source node tree (current module
number within the current course):
01 <xsl:text>&Module; </xsl:text>
02 <xsl:number level="single"
03 from="course"
04 count="module"/>
05 <xsl:text>: </xsl:text>
06 <xsl:value-of select="ancestor-or-self::module/title"/>

Page 395 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node tests (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Recall the components in the syntax of an axis-based location step:

axis
::
 nodetest
 [
predicate
][
 predicate
]

 More node tests available in XPath 2.0:
- based on name:

- element(element-name-or-wildcard)
- all elements along the axis that match the name or wildcard

- attribute(attribute-name-or-wildcard)
- all attributes along the attribute axis that match the name or wildcard
- using this explicitly with any axis other than the attribute axis is meaningless

- document-node(element(element-name-or-wildcard))
- all document nodes along the axis with the given matching document element

- the wildcard can be a "* " argument or an absent argument
- based on specified named type:

- element(element-name-or-wildcard, schema-type)
- all elements along the axis that match the named schema type (or a type

derived from this type) from the currently imported schema
- attribute(attribute-name-or-wildcard, schema-type)

- all attributes along the axis that match the named schema type (or a type
derived from this type) from the currently imported schema

- using this explicitly with any axis other than the attribute axis is meaningless
- document-node(element(element-name-or-wildcard, schema-type)

)
- all document nodes along the axis with the document element that matches

the named schema type (or a type derived from this type)
- the wildcard is "* "

- based on schema-declared type:
- based on the type as found in the schema declaration for the item
- schema-element(element-name)

- all elements along the axis that match both the name and the schema type for
that named element

- schema-attribute(attribute-name)
- all attributes along the axis that match both the name and the schema type for

that named attribute
- using this explicitly with any axis other than the attribute axis is meaningless

- document-node(schema-element(element-name))
- all document nodes along the axis with the document element that matches

both the name and the schema type for that named element

Page 121 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering (cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

An illustration of level="any" :
01 <xsl:number level="any" count="b"/>

a

c
b
 b
 b

b
 d
 b

e
 f

g
f
 b
 b

e

b

d

c

- the text node "6" is added to the result tree
- note the scope is the combination of nodes on the "preceding:: " and

"ancestor-or-self:: " axes after finding the closest ancestor
- without count= , only nodes of the current type and name would have been counted (in

this example "e"), adding the text node "2"

Example of use of level="any" to indicate the number of <figure> elements from the start
of the source node tree (the document-wide figure number):
01 <xsl:text>&Figure; </xsl:text>
02 <xsl:number level="any"
03 count="figure"
04 format="i"/>
05 <xsl:text>: </xsl:text>
06 <xsl:value-of select="title"/>

Page 396 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node tests (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

The "XML default namespace" is for un-prefixed elements: <para xmlns=" ..uri..">

- un-prefixed attribute names are always in no namespace

The "XPath default namespace" is that used for un-prefixed elements in XPath expressions
as b is in /x:a/b/y:c

- in the example, a is in the namespace associated with the prefix x and c is in the
namespace associated with the prefix y

- the XML default namespace and the XPath default namespace are always distinct and
are independently set

- the XPath default namespace is always the null namespace in XSLT 1
- use xpath-default-namespace= in XSLT 2
- changes to the XML default namespace do not impact on the XPath default

namespace (and vice versa)

Very common source of XSLT stylesheet errors
- for example, XHTML documents utilize the default namespace
- XSLT 1 stylesheets require every match and every select to use prefix-qualified names

in XPath addresses
- XSLT 2 stylesheets can conveniently use xpath-default-namespace=
- the following will not match the element {http://www.w3.org/1999/xhtml}b

01 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
02 version="1.0">
03

04 <xsl:template match="b" xmlns="http://www.w3.org/1999/xhtml">
05 ...template for bold handling with bad match expression...
06 </xsl:template>
07

08 </xsl:stylesheet>

Page 122 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering (cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

An illustration of level="multiple" :
01 <xsl:number level="multiple" count="b|c|d|g" format="1-1"/>

a

c
b
 b
 b

b
 d
 b

e
 f

g
f
 b
 b

e

b

d

c

- the text node "3-2-4 " is added to the result tree
- a tumbler is included in the text node for each level of the ancestor-or-self::

hierarchy where there are any counted elements at that level (a level of hierarchy is
skipped if that level has no members of the count= pattern)

- each element in the hierarchy is counted relative to its preceding-sibling:: and
self:: axes

- cousins are not included in the count
- when no from= is specified, the counting is from descendants of the root node
- all members of the count= pattern are counted at each level as siblings

Page 397 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node tests (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Consider an element in the source file using the name {urn:X-b}a in the default namespace:
01 This is a!

The following XSLT 1 stylesheet does not find the XML element at all:
- the XML default namespace declaration on line 6 is ignored by XPath
- out1 is in no namespace and out2 is in the "urn:X-b " namespace

01 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
02 version="1.0">
03 <xsl:template match="/">
04 <out1>
05 <xsl:value-of select="string(a)"/>
06 <out2 xmlns="urn:X-b">
07 <xsl:value-of select="string(a)"/>
08 </out2>
09 </out1>
10 </xsl:template>
11 </xsl:stylesheet>

The following XSLT 2 stylesheet finds the element only using the address on line 7, not on
line 5

- the address on line 5 is for "a" in the "urn:X-z "
- out1 is in no namespace and out2 is in the "urn:X-z " namespace

01 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
02 version="2.0" xpath-default-namespace="urn:X-z">
03 <xsl:template match="/">
04 <out1>
05 <xsl:value-of select="string(a)"/>
06 <out2 xmlns="urn:X-z" xsl:xpath-default-namespace="urn:X-b">
07 <xsl:value-of select="string(a)"/>
08 </out2>
09 </out1>
10 </xsl:template>
11 </xsl:stylesheet>

Page 123 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Source tree numbering (cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

Another illustration of level="multiple" adding from= and using the default formatting:
01 <xsl:number level="multiple" count="b|c|d|g" from="c"/>

a

c
b
 b
 b

b
 d
 b

e
 f

g
f
 b
 b

e

b

d

c

- the text node "2.4 " is added to the result tree
- note the hierarchy examined is along the "ancestor-or-self:: " axis counting only

from the descendants of the closest ancestral element node named with the from= attribute
- note the scope is the combination of nodes on the "preceding:: " and

"ancestor-or-self:: " axes that are descendants of the closest ancestral element node
named with the from= attribute

- the node being counted from is not included even if it is one of the node names being
counted

Page 398 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Abbreviations
Chapter 3 - XPath data model
Section 2 - XPath expressions

Recall the components in the syntax of an axis-based location step:

axis
::
 nodetest
 [
predicate
][
 predicate
]

Several abbreviations can make writing expressions more succinct
- some abbreviations are only an axis specification

- requires a node test
- allows predicates to be used within the step
- omitted axis specification

- a special case for XPath 2.0 that the attribute() and
schema-attribute() tests address nodes along the attribute:: axis

- all other node tests test address nodes along child:: axis
- the character '@'

- nodes along the attribute:: axis according to the node test and possible
predicate

- other abbreviations are complete location steps
- prohibits the direct use of predicates within the step
- the character ". "

- self::node()
- the current node regardless of the node type when the context is a node

- the current item when the context is not a node
- can be used stand-alone in the expression

- the sequence ".. "
- parent::node()

- the parent node if the current node is not an attached node
- element, text, processing-instruction or comment

- the attaching node if the current node is an attached node
- attribute or namespace

- the empty node-set if the current node is the root node
- can be used standalone in the expression

- the sequence "// "
- /descendant-or-self::node()/
- abbreviated absolute location path when used at the start of an expression
- abbreviated relative location path when used elsewhere in an expression
- must be followed by another location step in the expression

- predicates are allowed on the following abbreviated steps in XPath 2.0
- .[predicate][predicate]
- ..[predicate][predicate]

Page 124 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting numbers as a sequence of characters
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

A token can be used to represent how numbers are to be rendered as a sequence of characters:
- for <xsl:number/> in XSLT and for page numbering in XSL-FO
- format can specify a prefix and terminator for all and a separator for "multiple "
- default format is "1" with a period separator (not terminator) for "multiple "

format=" token-AVT"

- specifies the counting scheme to be used when formatting the value
- format="1" counts 1, 2, ..., 9, 10, 11, ..., 99, 100, 101, ...
- format="01" counts 01, 02, ..., 09, 10,..., 99, 100, ...

- each "0" prefix is a zero-fill indication for number values formatted less than the
length of the format string

- grouping-separator=" AVT" e.g. ", " specifies the character between digit groups
- grouping-size=" AVT" e.g. "3" specifies the number of digits in each group (e.g.:

1,000,000)
- format="i" counts i, ii, iii, iv, v, ..., ix, x, xi, ...
- format="I" counts I, II, III, IV, V, ..., IX, X, XI, ...
- format="a" counts a, b, ..., z, aa, ab, ac, ...
- format="A" counts A, B, ... Z, AA, AB, AC, ...
- format=" a-Unicode-character" specifies a translation

- converts the number into a representation based upon a specific language, pointing
to the "zero" character with a Unicode digit class

- letter-value=" alphabetic-or-traditional-AVT" for ambiguous distinctions
- distinguishes numbering schemes in those languages where the first character

of the sequence is ambiguous
- unlike English where the differing first characters of "a" and "i " distinguish

alphabetic and roman numeral formats
- format="w" counts one, two, ...
- format="W" counts ONE, TWO, ...
- format="Ww" counts One, Two, ...

ordinal=" ord-AVT" changes cardinal numbers to ordinal numbers
- ordinal="yes" with format="1" produces "1st ", "2nd ", etc.
- ordinal="yes" with format="w" produces "first ", "second ", etc.
- ordinal="yes" with format="W" produces "FIRST", "SECOND", etc.
- ordinal="yes" with format="Ww" produces "First ", "Second ", etc.

lang=" indication-AVT"

- indication of the language of words and letters (using same values as xml:lang)

Page 399 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Predicates
Chapter 3 - XPath data model
Section 2 - XPath expressions

Recall the components in the syntax of an axis-based location step:

axis
::
 nodetest
 [
predicate
][
 predicate
]

A predicate filters a set or sequence, keeping items by applying a test to each member:
- the qualifying expression keeps some items in and filters other items out

- the data type of the expression determines the effective Boolean value
- a value of false causes the node to be removed from the step's evaluation

- specifiable also on node sequences, atomic sequences and primary steps
- specified within square brackets "[" and "] "

- only singleton sequences or sequences starting with a non-empty node set
- numeric expression value: question[3] or question[last()]

- ordinal position (1-origin) in the current node list
- equivalent to child::question[position()=3] and

child::question[position()=last()] respectively
- addressing "the third element child named question " and "the last

element child named question " respectively
- the predicate is true for only the node with the given ordinal position

- node-set expression value: question[@answer] or question[guess]
- node presence test

- equivalent to child::question[attribute::answer] and
child::question[child::guess] respectively

- addressing "all question children with an answer attribute" and "all
question children with guess children" respectively

- the predicate is true only if the selection of nodes specified returns a
non-empty set of nodes

- string expression value: question[string(.)]
- non-empty string test

- equivalent to child::question[string(.)!='']
- addressing "all question children whose element string value is the

empty string"
- the predicate is true only if the string calculated is not the empty string

- other expression value: question[count(guess)=5]
- converted to Boolean according to boolean()

- addressing "all question children with five guess children"
- the predicate is true only if the expression evaluates to true

Page 125 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting numbers as a sequence of characters
(cont.)
Chapter 8 - Constructing the result tree
Section 3 - Numbering instructions

When using level="multiple" a number of tokens can be specified:
- each component (digits and separators) of the resulting string can be formatted differently
- the digits are formatted by corresponding format tokens
- the separators used between components are described by sequences appearing before

format tokens
- the period ". " is used as the separator sequence when no separator sequences are specified
- the last format token specified is repeated for unspecified format tokens
- the last separator sequence specified (that which is before the last format token) is repeated

for unspecified separator tokens
- a termination sequence may be specified (that which is after the last format token) and

is displayed after the last digits value

Consider the example where the number "1.4.2" needs to be formatted:

resulting text nodeformat attribute

1.4.2absent

1.d.iiformat="1.a.i"

1.d.bformat="1.a"

A.4.2format="A.1"

i.iv.iiformat="i"

1:d-iiformat="1:a-i"

1:d-bformat="1:a"

1---d---bformat="1---a"

1---d***iiformat="1---a***i"

Page 400 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Predicates (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

- for numeric predicates, the node ordering depends on the source of the node-set
- nodes specified in an axis expression are treated in proximity order

- nodes selected along the reverse axes (towards the start of the document) are
counted in reverse document order and nodes selected along forward axes
(towards the end of the document) are counted in document order

- when the axis includes the context node, the context node is at position one
and the node in the set closest to the context node is at position two, and so
on through the list

- when the axis does not include the context node, the node in the set closest
to the context node is at position one, the next closest is at position two, and
so on through the list

- nodes returned in an XPath intermediate step are treated in document order
- function return node sets and "() " sets

- nodes returned by a location path set expression are in no XPath order
- XSLT treats returned node sets in document order

- confusingly as "filters the node-set with respect to the child axis"
- preceding-sibling::*[1] does not necessarily select the same node as

(preceding-sibling::*)[1]
- the first is a complete location step expression while the second is a predicate

applied to a location path expression
- multiple predicates are cumulative

- evaluated left to right in the syntax
- specified in adjacent predicate expressions
- applied in turn to each node in the resulting set from applying the previous predicate
- number predicates are calculated on nodes remaining from a previous predicate

- e.g. task[@tools][1]
- the first task that makes reference to tools
- not necessarily the first task of the task's parent, because the first task

might not make reference to tools
- all predicates are applied to each node in current node list or set

- the predicate is evaluated in the context of each node in turn
- the predicate expression temporarily changes the context of evaluation to

produce the result
- the resulting context at the end of a given predicate's evaluation is not material

- the node stays in set if the predicate's result Boolean value is true
- otherwise, the node is removed from the list

Page 126 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 9 - Sorting and grouping

- Introduction - Sorting and grouping
- Section 1 - Sorting information to make result nodes
- Section 2 - Grouping constructs found in information
- Section 3 - Other uses of sorting in XSLT 1.0

Page 401 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example node-set expressions
Chapter 3 - XPath data model
Section 2 - XPath expressions

Some example location path addresses written as a select= attribute in XSLT:
1 self::partNbr

- the current node if it is an element named "partNbr ", if not, an empty node-set
2 child::partNbr

- child element nodes from the current node with the name "partNbr "
3 partNbr

- child element nodes from the current node with the name "partNbr "
4 element(partNbr)

- child element nodes from the current node with the name "partNbr "
5 ./partNbr

- child element nodes from the current node with the name "partNbr "
6 *[self::partNbr]

- child element nodes from the current node with the name "partNbr "
7 .//partNbr

- descendent element nodes from the current node with the name "partNbr "
8 //partNbr

- descendent element nodes from the root with the name "partNbr " (i.e. all such
element nodes in the entire document)

9 ../partNbr
- sibling (and possibly self) element nodes with the name "partNbr " by first going

to the parent with ".. " and then to the parent's children
10 @type

- attached attribute nodes with the name "type "
11 attribute(type)

- attached attribute nodes with the name "type "
12 ../@type

- the parent's attached attribute nodes with the name "type "
13 ../partNbr/@type

- the attribute nodes with the name "type " of the sibling element nodes with the
name "partNbr "

14 partNbr/@type
- the attribute nodes named "type " of the child element nodes with the name

"partNbr "
15 /..

- a guaranteed empty node-set (the root never has a parent node)
16 ()

- an empty sequence

Page 127 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sorting and grouping
Chapter 9 - Sorting and grouping

This chapter covers how to arrange the construction of results in ordered fashion.

Sorting

An important part of many transformations is the need to re-order the information in source
tree nodes into a sorted order for processing into result tree nodes:

- designed for sorting the context list using multiple criteria
- each criterion is a single value calculated for each node
- value may be simple node value or may be any XPath evaluation relative to node

- the source tree is untouched during sorting
- items being sorted are selected from the tree and the selection itself is sorted, not

the tree
- sorting can be language based, numeric based, type-based or based on custom semantics
- the context list can be any arbitrary sequence
- multiple keys are used to sort clumps of equal values by other values

- e.g. a secondary key is used when the primary key finds clumps of equal values
- the secondary key is only applied to the clumped values, maintaining the set

of clumped values in the same position of the primary sort
- e.g. a tertiary key is used when the secondary key finds clumps of equal values

- the tertiary key is only applied to the clumped values after the secondary sort,
maintaining the set of clumped values in the same position of the secondary
sort, in the same position of the primary sort

- leftover clumped values after all keys are accommodated are left in context list
sequence order

Page 402 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example node-set expressions (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Example expressions incorporating predicates:
1 partNbr[@type]

- the child "partNbr " element nodes that have the attribute named "type "
2 partNbr[@type='cots']/@price

- the attribute node named "price " of the child element nodes with the name
"partNbr " that have the attribute named "type " equal to the string 'cots '

3 partNbr[position()=3]
- the third child element node named "partNbr "

4 partNbr[3] | partNbr[5]
- the third and fifth child element nodes named "partNbr "
- because the data type of the predicates is a number, this is equivalent to:

- partNbr[position()=3] | partNbr[position()=5]
5 partNbr[3 or 5]

- this returns all of the children named "partNbr " because the data type of the
predicate is Boolean

- "3 or 5 " reduces to "true() or true() " which is always true()
6 partNbr[position()>=3 and position()<=5]

- the third through fifth child element nodes named "partNbr "
- remember that "<" must be escaped in XML attributes

7 partNbr[@type][3]
- the third child "partNbr " element node named that has an attribute named "type "

8 partNbr[3][@type]
- the third child "partNbr " element node if that node has an attached attribute named

"type ", otherwise, it returns the empty set
9 (//partNbr)[1]

- the first element node with the name "partNbr " in the entire document
10 //partNbr[1]

- descendent element nodes from the root with the name "partNbr " that are the first
amongst sibling partNbr elements

11 *[not(self::partNbr | self::partList)]
- all children elements except elements named "partNbr " or "partList "

12 * except (partNbr | partList)
- all children elements except elements named "partNbr " or "partList "

13 */* except (partNbr | partList)
- all grandchildren elements (the "except " doesn't address any grandchildren, so

there is no overlap between the two operands)
14 */* except (*/partNbr | */partList)

- all grandchildren elements except those named "partNbr " or "partList "

Page 128 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sorting and grouping (cont.)
Chapter 9 - Sorting and grouping

Grouping and uniqueness

Another important part of many transformations is the need to infer structure from the results
of sorting information, which is a process often called "grouping":

- collecting information while separating and grouping it by common values
- i.e. grouping the clumps under the value that created the clump
- selecting a single piece of composite information obtains all components
- a simple sort doesn't partition the composite information into constituent pieces

- specific application of the generalized problem of finding unique values from a set
- often necessary to find unique values in a set of values
- unique values make up the group headings

- no explicit support for grouping under duplicate source tree node values
- explicit support for grouping under duplicate source tree node values

This chapter covers three techniques of using XSLT 1.0 to group constructs when processing:
- using reverse-document-order axes
- the "Muenchian Method" of using <xsl:key>
- using variables

This chapter also covers the built-in XSLT 2.0 facility for grouping
- group-adjacent , group-by , group-starting-with and group-ending-with

Page 403 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example node-set expressions (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Example expressions that work in the reverse document order, thus could not be patterns in
XSLT match attributes:

1 following-sibling::text()[1]
- the closest following text node that is a sibling

2 following-sibling::text[1]
- the closest following element node named "text " that is a sibling

3 following::partNbr[1]
- the closest following element node with the name "partNbr "

4 following::text()
- all text nodes that follow the current node (does not include descendants)

5 following::partNbr[1]/following::text()
- all text nodes that follow the closest following element node with the name

"partNbr "
6 ancestor-or-self::*/@xml:lang

- the attributes named "xml:lang " of self and all the ancestral element nodes of any
name

7 ancestor-or-self::*[@xml:lang][1]
- self or the closest ancestral element node of any name that has an attribute named

"xml:lang "
8 ancestor-or-self::*[1][@xml:lang]

- self or the closest ancestral element node of any name if and only if that element
has an attribute named "xml:lang " (if the closest does not have the attribute, the
result is the empty set of nodes)

9 ancestor-or-self::*[@xml:lang][1]/@xml:lang
- the attribute named "xml:lang " of self or the closest ancestral element node of

any name that has an attribute named "xml:lang "
10 ancestor-or-self::*/@xml:lang[1]

- the attributes named "xml:lang " of self and all the ancestral element nodes of any
name (the predicate has no effect)

11 (ancestor-or-self::*/@xml:lang)[1]
- the attribute named "xml:lang " of the furthest ancestral element node or self of

any name that has an attribute named "xml:lang " (the set is in document order)
12 (ancestor-or-self::*/@xml:lang)[last()]

- the attribute named "xml:lang " of self or the closest ancestral element node of
any name that has an attribute named "xml:lang " (the set is in document order)

13 id(@reference)/@type
- the attribute named "type " of the element nodes returned by calling the id()

function with the value of the "reference " attribute attached to the current node

Page 129 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sorting and grouping (cont.)
Chapter 9 - Sorting and grouping

The XSLT instructions covered in this chapter are:
- <xsl:sort>

- specify a criterion with which to sort a set of nodes
- <xsl:perform-sort>

- specify the criteria with which to sort a sequence of items
- <xsl:for-each-group>

- act on a set of items according to grouping criteria

The XSLT functions covered in this chapter are:
- current-grouping-key()

- returns the value by which members of the current set of grouped items are grouped
- current-group()

- returns the members of the current set of grouped items

Page 404 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location path expression evaluation summary
Chapter 3 - XPath data model
Section 2 - XPath expressions

XPath location path expression evaluation begins at the first step:
- an arbitrary location

- oriented to the node or nodes resulting from executing a function or the reference
to a node-set variable

- an absolute location
- oriented to the root node of the tree of the current node
- only if the context item is a node
- only if the XQuery process is initialized with a source tree

- a relative location
- oriented to the current node
- only if the context item is a node
- if the XQuery process is initialized with a source tree this returns the root node

when not used in an XPath address

Each step is evaluated:
- resulting node list of previous step is the current node list for given step
- step conditions evaluated for each member of node list

- each evaluation uses each member as current node
- each evaluation returns a set of nodes

- resulting step node list is union of all evaluations in the step

Evaluation continues:
- steps evaluated left-to-right
- evaluation terminates when current node list empty

- resulting node list for the entire expression is the empty node list
- the final step's result becomes the expression's result

- the current node list after the last step is evaluated

Page 130 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sorting opportunities
Chapter 9 - Sorting and grouping
Section 1 - Sorting information to make result nodes

Sorting is performed on a context list created using select=

- rearranges the context list from sequence order into sorted order before acting on the
template

- the original order is not available to the template processing
- remember that the document tree is read-only and cannot be changed

- the sort never changes the document tree, only the context list

Sorting is available when processing templates:
- push items through the stylesheet:
- <xsl:apply-templates select=" node-set-expression">

...multiple <xsl:sort> instructions...
- pull items into the stylesheet:
- <xsl:for-each select=" sequence-expression">

...multiple <xsl:sort> instructions...

...template...

Also available when sorting sequences for processing (see page 406):
- returning a re-ordered sequence of nodes or values:
- <xsl:perform-sort select=" sequence-expression">

...multiple <xsl:sort> instructions...
- returning an ordered sequence of generated nodes or values:
- <xsl:perform-sort>

...multiple <xsl:sort> instructions...

...template and/or <xsl:sequence> constructors...

Also available when grouping items for processing (see page 434):
- pulling the first member of each group:
- <xsl:for-each-group select=" sequence-expression">

...multiple <xsl:sort> instructions...

...template...

Page 405 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Location path expression evaluation summary
(cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Consider the stepwise evaluation of the following expression utilizing predicates:

//
 ordered-list
 [
 item
 [
 /
]
]
[
para
 para
//
2
]

-descendants of "ordered-

list"

- test for the second "para" child

- "para" children

- two "para" children of "item"

- test if there is a "type" attribute

- "item" children of "ordered-list"

- test if there are any "item" children with a "type" attribute

and two "para" grandchildren

- reduce list to only "ordered-list" elements

- ignore the initial context and begin at the root node

- consider all descendents of the root node

- named "para"

all "para" element nodes that are descendents of all "ordered-list" element nodes

of the entire document node tree that have at least two "para" element node

children of an "item" child that has a "type" attribute specified or defaulted

@type

Page 131 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sorting sequences
Chapter 9 - Sorting and grouping
Section 1 - Sorting information to make result nodes

 Used return a sequence in sorted order
- e.g. in a variable declaration
- e.g. in a user function callable from XPath

The source of nodes is the select= or the body, but not both:

 <xsl:perform-sort select=" sequence-expression">
...multiple <xsl:sort> instructions...

 </xsl:perform-sort>

- select=" sequence-expression" defines the initial sequence
- the result of the instruction is the sequence sorted according to the sort criteria

 <xsl:perform-sort>
...multiple <xsl:sort> instructions...
...template and/or <xsl:sequence> constructors...

 </xsl:perform-sort>

- the sequence constructor defines the initial sequence
- use <xsl:sequence select=" expr"> to select values using XPath
- use content and constructors to create values using XSLT
- the result of the instruction is the sequence sorted according to the sort criteria

An example of a sorted variable of nodes:
- 01 <xsl:variable name="sorted-nums" as="element(num)+">

02 <xsl:perform-sort select="/nums/num">
03 <xsl:sort data-type="number"/>
04 </xsl:perform-sort>
05 </xsl:variable>

- recall the importance of the as= from page 223
- without the as= the variable would be a tree not a sequence

An example of a function used to sort a collection of arbitrary items:
- in support of a user function my:sort(sequence) for use in XPath
- 01 <xsl:function name="my:sort" as="item()*">

02 <xsl:param name="in" as="item()*"/>
03 <xsl:perform-sort select="$in">
04 <xsl:sort select="."/>
05 </xsl:perform-sort>
06 </xsl:function>

Page 406 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing of node-sets from reverse axes
Chapter 3 - XPath data model
Section 2 - XPath expressions

Important nuances regarding the processing of nodes selected by axes are as follows:
- recall that predicates are oriented by proximity to the current node, thus predicates applied

to nodes found on reverse axes act on the node-sets in reverse document order, while
predicates applied to nodes found on forward axes act on the node-sets in document
order

- when the resulting set selected by the given location step is processed as a collection of
nodes, it is processed in document order, not in axis order

- when a predicate is applied to a node-set expression containing nodes selected by
axes

- in an intermediate step for a following location step expression

Page 132 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The sort instruction
Chapter 9 - Sorting and grouping
Section 1 - Sorting information to make result nodes

<xsl:sort select=" optional-expression"/>

- express a single sort criterion based on an expression value
- one instruction for each sort key

- typically select=" relative-node-set-expression"
- evaluated relative to each node of the node set
- when absent the processor uses value of each node being sorted

- select="."
- multiple sort keys specified in sequence order

- primary, secondary, tertiary, etc.
- must all appear before any template content

- need not appear before <xsl:with-param>
- equal sort values are sorted in sequence order
- equal sort values are sorted in sequence order only if the sort is stable (default)

The sorted node set becomes the current node list
- defines XPath context of current node list and current node
- current node list is processed after being sorted

- sorting does not rearrange the source node tree, only the current node list
- the position() function always reflects the order of the current node list

- the order of the unsorted current node list before the sort
- can be used in select= to invert the sequence order

- the order of the sorted current node list after the sort
- references through the axes are not affected

- nodes along axes are always regarded in proximity order in expressions
- sets of nodes from axes are always regarded in document order

The <xsl:sort> instruction is not considered part of the template
- syntactically included within the template of the instruction
- is consumed by the instruction interpretation and ignored when processing individual

nodes

Page 407 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing of node-sets from reverse axes (cont.)
Chapter 3 - XPath data model
Section 2 - XPath expressions

Consider the XML file nodeset.xml :
01 <?xml version="1.0"?>
02 <set>
03 <item>A</item>
04 <item>B</item>
05 <item>C</item>
06 </set>

Processed with the XSLT file nodeset.xsl :
01 <?xml version="1.0"?><!--nodeset.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06

07 <xsl:output method="text"/>
08

09 <xsl:template match="/"> <!--root rule-->
10 <xsl:for-each select="//item[last()]"> <!--work from the end-->
11 <xsl:text>"preceding-sibling::item[1]": </xsl:text>
12 <xsl:value-of select="preceding-sibling::item[1]"/>
13 <xsl:text>&nl;"(preceding-sibling::item)[1]": </xsl:text>
14 <xsl:value-of select="(preceding-sibling::item)[1]"/>
15 <xsl:text>&nl;for each "preceding-sibling::item":</xsl:text>
16 <xsl:for-each select="preceding-sibling::item/text()">
17 <xsl:text>&nl; Item: </xsl:text><xsl:value-of select="."/>
18 </xsl:for-each>
19 </xsl:for-each>
20 </xsl:template>
21

22 </xsl:stylesheet>

Produces the following result:
01 "preceding-sibling::item[1]": B
02 "(preceding-sibling::item)[1]": A
03 for each "preceding-sibling::item":
04 Item: A
05 Item: B

Page 133 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The sort instruction (cont.)
Chapter 9 - Sorting and grouping
Section 1 - Sorting information to make result nodes

Sort key evaluation criteria attributes:
- each evaluated as an attribute value template
- the sort order

- order=" ascending-or-descending-AVT"
- default is "ascending "

- stable=" yes-or-no-AVT-default-yes"
- only allowed on the first <xsl:sort> of a set of sort directives
- a value of "yes " (default) returns sorted-equal items in sequence order
- a value of "no" returns sorted-equal items in an implementation order

- the sort nature is specified using data-type=" AVT"
- data-type="text" (default basis in XSLT 1.0)

- indicates the sort order is lexicographic based on the string text of the sort
key values

- Unicode code point order default is different than XSLT 1.0 default
- important when migrating stylesheets from 1.0 to 2.0

- collation=" uri-string-AVT" (default for text data type in XSLT 2.0)
- overrides Unicode collation (see page 289 for details)

- lang=" language-code-AVT" (default "en" for text data type in XSLT 1.0)
- override Unicode code point order with a specific language
- as specified by XML 1.0 recommendation for the xml:lang attribute

- IETF RFC 1766 "Tags for the Identification of Languages"
- case-order=" AVT" and default are language dependent

- case-order="upper-first"
- indicates the sort order is A a B b C c

- case-order="lower-first"
- indicates the sort order is a A b B c C

- W3C I18N Working Group
- responsible for issues of internationalization
- results of work will be incorporated into XSLT

- data-type="number"
- indicates the sort order is numeric based on the text of the sort keys being

converted to numeric values (the lang= attribute is ignored)
- data-type=" XPath-2-data-type" (default basis in XSLT 2.0)

- e.g. data-type="xs:dateTime"
- data-type=" prefix: processor-recognized-sort-scheme-name"

- xmlns: prefix=" processor-recognized-URI-reference"
- indicates the sort order is according to an algorithm recognized by the XSLT

processor for the specified scheme

Page 408 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Mimicking an XPath 1.0 conditional expression
for node sets
Chapter 3 - XPath data model
Section 2 - XPath expressions

 XPath 2.0 allows conditional expressions
- any Boolean test can return an alternative between two possible specified true/false

values

 XPath 1.0 does not include a conditional expression operator.
- Sometimes one has to choose between nodes depending on the existence of one of the

nodes.
- There is no operator to choose between two nodes in a single XPath expression.

Consider the following choice between a base name child element value and its alternate sort
name child element value for sorting as might be used in a Topic Maps application (note the
XSLT conditional is described in "If - Else If - Else" conditionality (page 140)):
01 <xsl:for-each select="//name">
02 <xsl:choose>
03 <xsl:when test="sortname">
04 <xsl:value-of select="sortname"/>
05 </xsl:when>
06 <xsl:otherwise>
07 <xsl:value-of select="basename"/>
08 </xsl:otherwise>
09 </xsl:choose>
10 <xsl:text>&nl;</xsl:text>
11 </xsl:for-each>

The above successfully prioritizes the use of the sort name above the use of the base name:
- If the sort name does not exist, the base name is used.
- If the sort name does exist, the sort name is used.

Because the union expression is not in error for an absent operand, one can choose only one
member from the result of the union:
01 <xsl:for-each select="//name">
02 <xsl:value-of select="(basename|sortname)[last()]"/>
03 <xsl:text>&nl;</xsl:text>
04 </xsl:for-each>

This technique requires knowledge of the document order of the two nodes.
- Use the predicate [last()] to choose the last in document order
- Use the predicate [1] to choose the first in document order

Page 134 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sort examples
Chapter 9 - Sorting and grouping
Section 1 - Sorting information to make result nodes

An example with multiple sort keys:
- people's names are composite (given name and surname), but treated as a whole

- both parts of the name are always displayed when the name is displayed
- the first part of the report is in names in document order
- the second part of the report is the names sorted by the surname
- the third part of the report is the names sorted first by the surname and then where equal

by the given name

The example XML source sorttest.xml is as follows:
01 <?xml version="1.0"?>
02 <names>
03 <name><given>Julie</given><surname>Holman</surname></name>
04 <name><given>Margaret</given><surname>Mahoney</surname></name>
05 <name><given>Ted</given><surname>Holman</surname></name>
06 <name><given>John</given><surname>Mahoney</surname></name>
07 <name><given>Kathryn</given><surname>Holman</surname></name>
08 <name><given>Ken</given><surname>Holman</surname></name>
09 </names>

The desired result is as follows:
01 Holman,Julie
02 Mahoney,Margaret
03 Holman,Ted
04 Mahoney,John
05 Holman,Kathryn
06 Holman,Ken
07 ---
08 Holman,Julie
09 Holman,Ted
10 Holman,Kathryn
11 Holman,Ken
12 Mahoney,Margaret
13 Mahoney,John
14 ---
15 Holman,Julie
16 Holman,Kathryn
17 Holman,Ken
18 Holman,Ted
19 Mahoney,John
20 Mahoney,Margaret

Page 409 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 4 - Processing model

- Introduction - A predictable behavior for processors
- Section 1 - Conditional control instructions
- Section 2 - Pull facilities
- Section 3 - Push facilities
- Section 4 - Summary and examples

Page 135 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sort examples (cont.)
Chapter 9 - Sorting and grouping
Section 1 - Sorting information to make result nodes

The following stylesheet sorttest.xsl will produce the desired results:
01 <?xml version="1.0"?><!--sorttest.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06 <xsl:output method="text"/>
07

08 <xsl:template match="/"> <!--root rule-->
09 <xsl:apply-templates select="/*/name"/> <!--unsorted-->
10 <xsl:text>---&nl;</xsl:text>
11 <xsl:apply-templates select="/*/name"> <!--sort with one key-->
12 <xsl:sort select="surname"/>
13 </xsl:apply-templates>
14 <xsl:text>---&nl;</xsl:text>
15 <xsl:for-each select="/*/name"> <!--sort with two keys-->
16 <xsl:sort select="surname"/>
17 <xsl:sort select="given"/>
18 <xsl:call-template name="name"/> <!--show the name-->
19 </xsl:for-each>
20 </xsl:template>
21

22 <!--both direct and indirect application of template-->
23 <xsl:template name="name" match="name">
24 <xsl:value-of select="surname"/>,<xsl:value-of select="given"/>
25 <xsl:text>&nl;</xsl:text>
26 </xsl:template>
27

28 </xsl:stylesheet>

Of note:
- the name display template is used for both push and pull operations on the tree
- the program illustrates pushing with one sort key and pulling with two sort keys

Page 410 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

A predictable behavior for processors
Chapter 4 - Processing model

The basic processing model for XSLT is designed to ensure predictability
- predictable processing behavior every time

- all aspects of the processing are well-defined
- processor builds the operation tree of nodes from the transformation expression

- some nodes of which are evaluations and calculations
- some nodes of which may be engaging extensions implemented by the processor
- the remainder of which are literal result elements that are to be used in the

construction of the result
- processor builds the source tree of nodes from the primary source resource

- a primary source tree is not required
- the markup of the XML source document is not material
- the vocabulary used in the source is not material to the processor

- with the exception of xml:*= attributes available for use with all XML
vocabularies

- result tree construction starts with operation tree
- start with the template of the template rule for the root node
- alternatively start at a specified named template or mode

- the transform constructs the content of the result node tree in result parse order in one
pass

- the transform writer must plan the flow of the transform process according to the
document order of the result

- other source trees are created from other source files on request by the transform
- components from the source trees are obtained where required when executing

instructions found in the transform
- once a portion of the result tree is completely generated there is no method of

returning to modify the result tree in any way
- the result tree of nodes may be serialized into markup

- XML markup
- HTML markup (using SGML lexical conventions)
- XHTML markup (using XML lexical conventions)
- simple text
- syntax and lexical conventions recognized by the particular implementation of the

processor (binary or text)
- interpreted XSL formatting objects (e.g.: display, print, aural, etc.)
- remember the processor is not required to support any particular serialization method

and may choose to serialize the tree as XML only if at all

Page 136 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping objectives
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Reporting a collection of information grouped by components with equal values
- simple sorting obliges the reporting of all information in the component
- grouping requires identifying all items with a common component and reporting under

each unique value of that component
- identify unique values of grouping component
- report other components of all items with same grouping value

Types of grouping:
- adjacent grouping

- suppression of common adjacent values
- uniqueness grouping

- identify unique values in a set of nodes
- group the set of nodes according to unique values

- show the common use of the unique value as a heading of the members of
the set

- list the sub-constructs under the unique values as distinguishers

XSLT 1.0 approaches for grouping and uniqueness are algorithmic
- requires coding of the approach by the transform writer

XSLT 2.0 approaches are declarative using built-in facilities

 General-purpose facility for uniqueness available in XPath 2.0
- finding distinct values: distinct-values(items)
- work with a set of unique values found in the collection of items

- uniqueness determined by string value comparison

 General-purpose facility for grouping available in XSLT 2.0
- finding the first of groups of distinct nodes or values: <xsl:for-each-group>
- work with groups of items returned based upon grouping criteria

 It is often difficult to characterize a problem to be solved as being a grouping problem
- for example, consider "finding all the countries covered by sales territories by different

salesmen"
- a data set might contain 100 salesmen records, each indicating the country in which they

sell
- the report desired need only list those countries which are covered, not including a list

of the salesmen for each country
- finding the unique set of countries is the first step of the grouping problem, the second

step of grouping isn't engaged
- not difficult in XSLT 2.0 because of the available functions

Page 411 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

A predictable behavior for processors (cont.)
Chapter 4 - Processing model

A simple illustration of the basic process
- the illustrated operation node tree has literal result nodes and a single operation node
- the operation node obtains information from a particular point in the source tree
- not shown in this illustration are built in behaviors copying nodes to the result tree

Processor

XQuery/

XSLT

XML

XML

Source

Transform

Operation

Execution
 3'

4'
 5'

A

B

1

2

Source

Node

Tree

Result

Node

Tree

Operation

Node Tree

Legend:

Source

Node

Literal Result

Node

Action

Node

3

4
 5

XSL

Formatting

Objects

XSL

Formatting

Objects

Result

Non-

XML

XHTML

HTML

XSL

Formatting

Objects

Data

Projection

D
C

A'

B'
 D'

The diagram's action nodes are created from XSLT instructions.

Page 137 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Adjacent grouping in XSLT 1.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Axis-based tests for the first in document order or for closest preceding construct:
- checks for presence/absence of a prior occurring construct
- recall the axis directions in XPath shown on slide 72

To test preceding sibling values:
- preceding-sibling:: test[1]

- always uses reverse document order of nodes
- axes are source node tree proximity oriented
- the first item on prior axes is the closest such item

- if there are no such first items, then the current node must be the first
item

- this pattern does not act on resulting sort order of nodes
- there are no functions to work on or address members of a sorted set of nodes

To test preceding values when not dealing with siblings:
- preceding:: test[1]

Page 412 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

A predictable behavior for processors (cont.)
Chapter 4 - Processing model

The XSLT instructions covered in this chapter are as follows.

Instructions related to process control:
- <xsl:if>

- single-state conditional inclusion of a template
- <xsl:choose>

- multiple-state conditional inclusion of one of a number of templates
- <xsl:when>

- single-state conditional inclusion of a template within a multiple-state condition
- <xsl:otherwise>

- default-state conditional inclusion of a template within a multiple-state condition

Instructions to pull information from the source tree or to calculate values:
- <xsl:copy-of>

- add to the result tree a copy of nodes from the source tree
- <xsl:value-of>

- add to the result tree the evaluation of an expression or the value of a source tree
node

- <xsl:for-each>
- reposition to a selection of source tree nodes or values using a supplied template

Instructions to push information from the source tree through the stylesheet:
- <xsl:apply-templates>

- supply a selection of source tree nodes to push through template rules
- <xsl:template>

- define a template rule

Page 138 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Adjacent grouping in XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The example XML source sorttest.xml is as follows:
01 <?xml version="1.0"?>
02 <names>
03 <name><given>Julie</given><surname>Holman</surname></name>
04 <name><given>Margaret</given><surname>Mahoney</surname></name>
05 <name><given>Ted</given><surname>Holman</surname></name>
06 <name><given>John</given><surname>Mahoney</surname></name>
07 <name><given>Kathryn</given><surname>Holman</surname></name>
08 <name><given>Ken</given><surname>Holman</surname></name>
09 </names>

Consider the need to produce the following result, the original and sorted summary, grouped
omitting adjacent surnames:
01 Holman, Julie
02 Mahoney, Margaret
03 Holman, Ted
04 Mahoney, John
05 Holman, Kathryn
06 Holman, Ken
07 ---
08 Holman Julie
09 Mahoney Margaret
10 Holman Ted
11 Mahoney John
12 Holman Kathryn
13 Ken

Note above how only the last prefix is omitted because the only adjacent common surnames
are at the end of the original list of names.

Page 413 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

"If - Then" conditionality
Chapter 4 - Processing model
Section 1 - Conditional control instructions

Conditionally adding a template choosing from a single alternative:
01 <xsl:if test=" expression-effective-boolean-value">
02 template
03 </xsl:if>

- the effective Boolean value is the expression value converted implicitly to a boolean
value

- test expression can be simple or complex
- presence test with a node set expression

- attempts to select from the source node tree according to the expression
- determines success if at least one node from the tree would be selected

or failure if no nodes from the tree would be selected
- an empty node-set tests false ; a non-empty node-set tests true

- data type values can be tested as standalone values
- the number values 0 and NaN test false , all other numbers test true
- the empty string tests false , all other strings test true
- a result tree fragment always tests true and can never test false

- boolean operators can combine multiple criteria into a single testing alternative
- true test result adds template to the result tree

- the XPath context for the template does not change
- current node and current node list do not change

- any instructions found therein are processed in the usual way
- false test result continues processing after instruction

An example of use with a node selection test expression:
01 <xsl:if test="caption"> <!--use long version if it has a caption-->
02 <xsl:text>Figure title: </xsl:text>
03 <xsl:value-of select="caption/long-title"/>
04 </xsl:if>

An example of use with a function test expression to create a comma-separated list:
01 <xsl:for-each select="//item">
02 <xsl:value-of select="."/> <!--all in comma-separated list-->
03 <xsl:if test="position()!=last()">, </xsl:if>
04 </xsl:for-each>

Page 139 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Adjacent grouping in XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The following script groupadj.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--groupadj.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05 <!ENTITY pad " ">
06]>
07 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
08 version="1.0">
09 <xsl:output method="text"/>
10

11 <xsl:template match="/"> <!--root rule-->
12 <xsl:for-each select="/*/name"> <!--unsorted-->
13 <xsl:value-of select="concat(surname,', ',given)"/>
14 <xsl:text>&nl;</xsl:text></xsl:for-each>
15 <xsl:text>---&nl;</xsl:text>
16

17 <xsl:for-each select="/*/name"> <!--group adjacent-->
18 <xsl:choose>
19 <xsl:when test="preceding-sibling::name[1]
20 [surname=current()/surname])">
21 <xsl:text>&pad;</xsl:text>
22 </xsl:when>
23 <xsl:otherwise>
24 <xsl:value-of select="surname"/>
25 <xsl:value-of select="substring('&pad;',
26 string-length(surname) + 1)"/>
27 </xsl:otherwise>
28 </xsl:choose>
29 <xsl:value-of select="given"/>
30 <xsl:text>&nl;</xsl:text>
31 </xsl:for-each>
32 </xsl:template>
33

34 </xsl:stylesheet>

Of note:
- when checking for like surnames when adjacent:

- the test first checks if the node is the first node of the set by looking for any
preceding sibling element nodes of the same name

- if there are preceding sibling element nodes, then the presence of immediately
preceding sibling element node with the same value of the surname element child
is checked

- each displayed surname is followed by the number of spaces needed to fill out the padding
- this creates a virtual tab stop in the text output

Page 414 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

"If - Else If - Else" conditionality
Chapter 4 - Processing model
Section 1 - Conditional control instructions

Conditionally adding a template choosing from multiple alternatives:
01 <xsl:choose>
02 <xsl:when test=" expression-effective-boolean-value">
03 template
04 </xsl:when>
05 ...
06 <xsl:when test=" expression-effective-boolean-value">
07 template
08 </xsl:when>
09 <xsl:otherwise>
10 template
11 </xsl:otherwise>
12 </xsl:choose>

- one or more <xsl:when> constructs
- each with a boolean expression specified in a test= attribute
- each tested in turn until first expression evaluates to true

- the XPath context for the template does not change
- current node and current node list do not change

- any instructions found therein are processed in the usual way
- the template may be empty

- useful when necessary to not add anything in certain conditions and add
something when all other conditions are tested

- at most one <xsl:otherwise> construct
- used when all <xsl:when> constructs evaluate to false
- following all <xsl:when> constructs
- if absent when conditions require it to be used, nothing is added to the result

Note that at most one of the templates in the <xsl:choose> construct will be added to the
result tree

- perhaps none
- never more than one

An example of use determining one's current location as the basis for presenting some text:
01 <xsl:choose>
02 <xsl:when test="self::frame">Frame </xsl:when>
03 <xsl:when test="self::lesson">Lesson </xsl:when>
04 <xsl:otherwise>Module </xsl:otherwise>
05 </xsl:choose>
06 <xsl:value-of select="title"/>

Of note:
- the first test true indicates which named node is on the self axis

Page 140 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The essence of grouping under uniqueness
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The essence of grouping under uniqueness is to utilize a test on all values that is true only
once for each unique value

- recall that sorting does not rearrange the source node tree and that axes always relate to
the order in the source node tree

- could check along an axis in either document order to check following values or reverse
document order to find preceding values

- for example purposes, the following will check the set of nodes in reverse document
order to be empty to determine a given value is the first in document order

 For each sort key, find the unique data values for that key:
- visit all values in the population to be grouped for the key

- the visiting may be done in sequence order or in sorted order
- determine for each given value whether it is the first such value in sequence order

in the source node tree
- the source tree can be tested for any preceding nodes of the same calculated

comparison value
- at the first in sequence order for each value, handle the group with that value

- if there are no preceding nodes in the source node tree of the same value assume
the given value has not been processed yet

- process the given value
- revisit data selecting only those nodes matching the given value
- process the resulting current node set that represents the key's value set

- for example, do next level sort given the value found at this level
- for example, do the final result tree building based on key value

- after the first in sequence order for each value, do nothing
- if there are preceding nodes in the source node tree of the same value assume the

given value has already been processed
- ignore the node and value

 Built-in facilities for grouping
- establish the grouping keys found in the population based on grouping criteria

- four different methods of stating criteria
- for each group defined by its grouping key act on the first in the group

- access is available to the current grouping key
- the current value is the first of the population with that value

- within each group process the members of the group as a set
- access is available to the current group where all members have the same grouping

key

Page 415 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node type testing
Chapter 4 - Processing model
Section 1 - Conditional control instructions

Examples of using self:: axis to determine the type of the current node:
- the following tests can be read "if there are any nodes of the given node type or element

node name along the self axis then add the template to the result tree"
- useful only for comment, processing instruction, text, and element nodes

- the self:: axis cannot be used for attribute or namespace nodes because the
primary node type along the axis is element node

01 <xsl:choose>
02 <xsl:when test="self::book:fig"> <!--an element in ns-->
03 <xsl:text>book:fig: </xsl:text><xsl:value-of select="."/>
04 </xsl:when>
05 <xsl:when test="self::*"> <!--an element-->
06 <xsl:text>Element: </xsl:text><xsl:value-of select="."/>
07 </xsl:when>
08 <xsl:when test="self::text()"> <!--text-->
09 <xsl:text>Text: </xsl:text><xsl:value-of select="."/>
10 </xsl:when>
11 <xsl:when test="self::comment()"> <!--a comment-->
12 <xsl:text>Comment: </xsl:text><xsl:value-of select="."/>
13 </xsl:when>
14 <xsl:when test="self::processing-instruction()"> <!--pi-->
15 <xsl:text>PI: </xsl:text><xsl:value-of select="."/>
16 </xsl:when>
17 </xsl:choose>

Using self::book:fig axis is safer than name(.)='book:fig'

- the name(.) function returns the name with the namespace prefix as used in the XML
source document

- may be different than the namespace prefix used in the stylesheet
- especially important when the XML source document is using the default namespace
- it is very common for people to use name(.) , but this technique is not namespace

aware
- the self:: axis accommodates a namespace URI with an arbitrary prefix

Page 141 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The essence of grouping under uniqueness (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Consider the unsorted set of surnames, where the generate-id() value is exposed and first
of each surname is identified:
01 [Unsorted surnames]
02 1: Holman, Julie (d0e3) - First "Holman"
03 2: Mahoney, Margaret (d0e9) - First "Mahoney"
04 3: Holman, Ted (d0e15)
05 4: Mahoney, John (d0e21)
06 5: Holman, Kathryn (d0e27)
07 6: Holman, Ken (d0e33)

All of the surnames are visited, but action is taken only on the first of each unique surname
value; the given names are revisited in sorted order of given name:
01 [Visit all of the surnames]
02 1: Holman, Julie (d0e3) - First "Holman" d0e3=d0e3
03 [Revisit all of the same surname]
04 1: Holman, Julie (d0e3)
05 2: Holman, Kathryn (d0e27)
06 3: Holman, Ken (d0e33)
07 4: Holman, Ted (d0e15)
08 2: Mahoney, Margaret (d0e9) - First "Mahoney" d0e9=d0e9
09 [Revisit all of the same surname]
10 1: Mahoney, John (d0e21)
11 2: Mahoney, Margaret (d0e9)
12 [3: Holman, Ted (d0e15)] - Not first "Holman" d0e15!=d0e3
13 [4: Mahoney, John (d0e21)] - Not first "Mahoney" d0e21!=d0e9
14 [5: Holman, Kathryn (d0e27)] - Not first "Holman" d0e27!=d0e3
15 [6: Holman, Ken (d0e33)] - Not first "Holman" d0e33!=d0e3

Important note: the uniqueness and grouping algorithms work even if the selections are not
sorted

When using XSLT 2.0 only the first in the population of each distinct value is visited
- in this example it would be "Holman (d0e3) " and "Mahoney (d0e9) "

Page 416 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node type testing (cont.)
Chapter 4 - Processing model
Section 1 - Conditional control instructions

 Examples of using the union operator to determine the current node:
- useful for root, attribute, and namespace nodes
- relies on the count of nodes being one when calculating the union of the current node

with the desired node
01 <xsl:choose>
02 <xsl:when test="count(.|/)=1"> <!--root-->
03 <xsl:text>root </xsl:text>
04 </xsl:when>
05 <!--specific namespaced-unqualified attribute-->
06 <xsl:when test="count(.|../@version)=count(../@version)">
07 <xsl:text>version attribute </xsl:text>
08 </xsl:when>
09 <!--specific namespace-qualified attribute-->
10 <xsl:when test="count(.|../@book:ref)=count(../@book:ref)">
11 <xsl:text>book:ref attribute </xsl:text>
12 </xsl:when>
13 <!--any namespace-qualified attribute-->
14 <xsl:when test="count(.|../@book:*)=count(../@book:*)">
15 <xsl:text>book:* attribute </xsl:text>
16 </xsl:when>
17 <!--any attribute-->
18 <xsl:when test="count(.|../@*)=count(../@*)">
19 <xsl:text>attribute </xsl:text>
20 </xsl:when>
21 <!--specific namespace-->
22 <xsl:when test="count(.|../namespace::xsl)=
23 count(../namespace::xsl)">
24 <xsl:text>XSL namespace </xsl:text>
25 </xsl:when>
26 <!--any namespace-->
27 <xsl:when test="count(.|../namespace::*)=
28 count(../namespace::*)">
29 <xsl:text>namespace </xsl:text>
30 </xsl:when>
31 </xsl:choose>

The intuition of using test="not(..)" for the root node only works in XPath 1.0
- XPath 2.0 allows standalone attribute-node and namespace-node variables that do not

have a parent, and thus would test true with "not(..) ":
01 <xsl:variable name="ntattr" as="attribute()">
02 <xsl:attribute name="book:ref" select="'test'"/>
03 </xsl:variable>
04 <xsl:variable name="ntns" as="node()">
05 <xsl:namespace name="book" select="'urn:X-Crane:book'"/>
06 </xsl:variable>

Page 142 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using axes in XSLT
1.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Consider the need to produce the following result, the original and sorted summary, grouped
according to surname, using axes to determine the essence of grouping under uniqueness:
01 Holman, Julie
02 Mahoney, Margaret
03 Holman, Ted
04 Mahoney, John
05 Holman, Kathryn
06 Holman, Ken
07 ---
08 Holman:
09 Julie
10 Kathryn
11 Ken
12 Ted
13 Mahoney:
14 John
15 Margaret

Page 417 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Node type testing (cont.)
Chapter 4 - Processing model
Section 1 - Conditional control instructions

 Node type testing is more intuitive in XPath 2.0:
- more node tests are available to use
- no node test for a namespace node, so same awkwardness is necessary as in XPath 1.0

Testing without consideration for the node's name:
01 <xsl:choose>
02 <xsl:when test="self::element()">element</xsl:when>
03 <xsl:when test="self::attribute()">attribute</xsl:when>
04 <xsl:when test="self::comment()">comment</xsl:when>
05 <xsl:when test="self::processing-instruction()">pi</xsl:when>
06 <xsl:when test="self::text()">text</xsl:when>
07 <xsl:when test="self::document-node()">doc</xsl:when>
08 <xsl:when test="count(. | ../namespace::*)=
09 count(../namespace::*)">ns</xsl:when>
10 </xsl:choose>

Testing with consideration for the node's name:
01 <xsl:choose>
02 <xsl:when test="self::element(book:fig)">book:fig</xsl:when>
03 <xsl:when test="self::attribute(book:ref)">@book:ref</xsl:when>
04 <xsl:when test="self::processing-instruction(test)">p-test</xsl:when>
05 <xsl:when test=". is ../namespace::book">ns-book</xsl:when>
06 </xsl:choose>

Page 143 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using axes in XSLT
1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The following script group.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--group.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05 <!ENTITY pad " ">
06]>
07 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
08 version="1.0">
09 <xsl:output method="text"/>
10

11 <xsl:template match="/"> <!--root rule-->
12 <xsl:for-each select="/*/name"> <!--unsorted-->
13 <xsl:value-of select="concat(surname,', ',given)"/>
14 <xsl:text>&nl;</xsl:text></xsl:for-each>
15 <xsl:text>---&nl;</xsl:text>
16

17 <xsl:for-each select="/*/name"> <!--group sorted-->
18 <xsl:sort select="surname"/> <!--by primary key-->
19

20 <!--the following test is only true once for each primary
21 key, even though all elements are visited by the for-each-->
22 <xsl:if test="not(preceding-sibling::name
23 [surname=current()/surname])">
24 <xsl:value-of select="surname"/>
25 <xsl:text>:&nl;</xsl:text>
26 <!--reselect only nodes with current primary key-->
27 <xsl:for-each select="/*/name[surname=current()/surname]">
28 <xsl:sort select="given"/> <!--by secondary key-->
29 <xsl:text>&pad;</xsl:text>
30 <xsl:value-of select="given"/>
31 <xsl:text>&nl;</xsl:text>
32 </xsl:for-each>
33 </xsl:if>
34 </xsl:for-each>
35 </xsl:template>
36

37 </xsl:stylesheet>

Of note:
- every node in the data is repeatedly visited once for each node of the data

- the number of visits is the number of nodes squared
- once to establish order of the primary key
- once to establish order of the secondary key within all elements matching the

primary key

Page 418 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example transformation requirement
Chapter 4 - Processing model
Section 2 - Pull facilities

To illustrate various aspects of the processing model, examine the different requirements
presented by the following transformation of information from a source instance into a desired
result in HTML.

Consider the following XML source instance card.xml :
01 <?xml version="1.0"?>
02 <?xml-stylesheet type="text/xsl" href="cardpush.xsl"?>
03 <card><name>G. Ken Holman</name>
04 <address>Box 266, Kars, Ontario CANADA K0A-2E0</address>
05 <email type="Current">gkholman@CraneSoftwrights.com</email>
06 <email type="Replaces">gkholman@CanadaMail.com</email>
07 </card>

The source tree of nodes is as follows:
01 SHOWTREE - http://www.CraneSoftwrights.com/resources/
02 1 Proc. Inst. 'xml-stylesheet': {type="text/xsl" href="cardpush.xsl"}
03 2 Element 'card':
04 2.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
05 2.1 Element 'name' (card):
06 2.1.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
07 2.1.1 Text (card,name): {G. Ken Holman}
08 2.2 Text (card): {
09 }
10 2.3 Element 'address' (card):
11 2.3.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
12 2.3.1 Text (card,address): {Box 266, Kars, Ontario CANADA K0A-2E0}
13 2.4 Text (card): {
14 }
15 2.5 Element 'email' (card):
16 2.5.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
17 2.5.A Attribute 'type': {Current}
18 2.5.1 Text (card,email): {gkholman@CraneSoftwrights.com}
19 2.6 Text (card): {
20 }
21 2.7 Element 'email' (card):
22 2.7.I Namespace 'xml': {http://www.w3.org/XML/1998/namespace}
23 2.7.A Attribute 'type': {Replaces}
24 2.7.1 Text (card,email): {gkholman@CanadaMail.com}
25 2.8 Text (card): {
26 }

Page 144 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using variables in
XSLT 1.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Given that finding required nodes in a source node tree when using axes could be comparatively
slow as the tree grows larger, using variables can extract the nodes into a collection that can
be searched faster than when using the tree.

Grouping by identifying unique values within variables of node-sets:
- collect the population needing to be grouped into a node-set variable

- the nodes can come from different node trees
- find the first member in the variable with each unique value

- show the unique value of the construct as a heading
- reselect the members from the variable using that construct's value, displaying

distinguishing values separately
- selecting from a variable is faster than selecting from the tree

Page 419 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example transformation requirement (cont.)
Chapter 4 - Processing model
Section 2 - Pull facilities

The objective is to render the following:

Of note:
- the numbers to the left correspond to the line numbers in the HTML file
- there is boilerplate text on the canvas that doesn't come from the source tree
- attribute values and element values are being displayed on the canvas
- the name is only in the instance once and is rendered twice
- each pass of the information duplicates some data and suppresses or selects other data
- the email addresses are hyperlinked (see status bar at bottom) thus requiring an element's

content from the source to be included in both an attribute (with a prefix) and content of
the result

Page 145 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using variables in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Note first that the generated id can easily be obtained of the first member in the variable of a
given value

- generate-id($ variable[value-predicate][1])
- recall that the generated identifier for a node is persistent through the execution of a

given stylesheet and that it operates on the first member of a given node set
- two nodes can be checked as being the same node by comparing their respective

generated identifiers
- the use of "[1] " above is redundant but helpful when learning

For each key, starting with the primary sort key:
- extract all items that are to be grouped into a variable

- if desired, sort the items and examine each one in the variable in sorted order
- otherwise, just examine each variable in adjacent order to get an adjacent grouping

- only act on the determination of "this node is the first in the variable with its value"
- generate-id(.) = generate-id($ variable[value-predicate][1])
- skip processing on all other variable members that do not pass the test because they

aren't the first of their respective values
- group-oriented processing can occur for each node selected as it represents each unique

value from the variable
- reselect all nodes in the variable matching the particular value

- select="$ variable[value-predicate]"
- process the resulting current node set that represents the sort key's unique value set of

nodes
- for example, do next level sort given the value found at this level
- for example, do the final result tree building based on key value

Page 420 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example transformation requirement (cont.)
Chapter 4 - Processing model
Section 2 - Pull facilities

One HTML encoding is the following result instance:
01 <html>
02 <center>
03 <u>Electronic Contact Information</u>
04 </center>
05 <p>Name: G. Ken Holman</p>
06

07 <p>Current Email: <a href="mailto:gkholman@CraneSoftwrights.com"
08 >gkholman@CraneSoftwrights.com
09 </p>
10 <p>Replaces Email: <a href="mailto:gkholman@CanadaMail.com"
11 >gkholman@CanadaMail.com
12 </p>
13 <center>
14 <u>Postal Contact Information</u>
15 </center>
16 <p>Name: G. Ken Holman</p>
17 <p>Address: Box 266, Kars, Ontario CANADA K0A-2E0</p>
18 </html>

Of note:
- no line feed characters in the string before each anchor

Page 146 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using variables in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The following script group2.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--group2.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05 <!ENTITY pad " ">
06]>
07 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
08 version="1.0">
09 <xsl:output method="text"/>
10

11 <xsl:template match="/"> <!--root rule-->
12 <xsl:for-each select="/*/name"> <!--unsorted-->
13 <xsl:value-of select="concat(surname,', ',given)"/>
14 <xsl:text>&nl;</xsl:text></xsl:for-each>
15 <xsl:text>---&nl;</xsl:text>
16 <!--group sorted-->
17 <xsl:variable name="names" select="/*/name"/>
18 <xsl:for-each select="$names"> <!--look at all names-->
19 <xsl:sort select="surname"/> <!--by primary key-->
20

21 <!--only act if this is the first node with this surname-->
22 <xsl:if test="generate-id(.)=
23 generate-id($names[surname=current()/surname][1])">
24 <xsl:value-of select="surname"/>
25 <xsl:text>:&nl;</xsl:text>
26 <!--get all nodes for the given surname-->
27 <xsl:for-each select="$names[surname=current()/surname]">
28 <xsl:sort select="given"/> <!--by secondary key-->
29 <xsl:text>&pad;</xsl:text>
30 <xsl:value-of select="given"/>
31 <xsl:text>&nl;</xsl:text>
32 </xsl:for-each>
33 </xsl:if>
34 </xsl:for-each>
35 </xsl:template>
36

37 </xsl:stylesheet>

Page 421 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Approaches to transformation
Chapter 4 - Processing model
Section 2 - Pull facilities

Two approaches:
- to "pull" information from the source tree

- adding the values into the result tree where desired
- by obtaining the values of or repositioning to source tree nodes under transform

control
- to "push" the source tree through the transform

- the arrival of source tree nodes triggers repositioning events that are caught by
template rules waiting in the stylesheet

Choosing which approach:
- depends on:

- the nature of the source data
- is the order known, unknown, or known but arbitrary?
- is there mixed content that needs to be processed?

- which file is to dictate the order of the result?
- is the transform writer dictating the order through the transform?
- does the transform have to relinquish control to the author of the XML

document and have the source file dictate the order?
- maintenance and flexibility questions

- what language facilities are available for modularization and specialization?
- pull when the source data order is known

- the kind and order of the nodes in the source tree are as expected by the transform
writer

- the transform writer dictates the creation of the result tree
- the source nodes can be accessed on command
- the data is pulled by obtaining values from each of the nodes at the required

locations of the result
- the count of source nodes at each location doesn't necessarily need to be

known, only the location
- it is possible to reposition to an unknown number of source nodes

characterized only by their location

Page 147 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using keys in XSLT
1.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Given that access to a key table should be optimized by a processor, obtaining nodes based
on a lookup value should be faster than either source tree access or variable access.

Grouping by identifying key nodes
- group a set of nodes according to a node's presence in an <xsl:key> table
- find the first member in the table with each unique value

- show the unique value of the construct as a heading
- reselect the members from the table using that construct's value, displaying distinguishing

values separately
- selecting from the table is faster than selecting from the tree or from a variable

Colloquially referred to as the "Muenchian Method" after Steve Muench who first proposed
the use of <xsl:key> for grouping.

Page 422 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Approaches to transformation (cont.)
Chapter 4 - Processing model
Section 2 - Pull facilities

Choosing which approach (cont.):
- push when the source data order is unknown or arbitrary

- the source tree dictates the creation of the result tree
- the kind and order of the nodes in the source tree are not expected by the

transform writer
- the writer chooses which portions of the source node tree are pushed through

the transform
- simply by name or by some other selection pattern for source tree nodes

- the transform provides handlers for the events triggered by source tree nodes
- the handlers are called template rules

- the triggers are called match patterns
- characterizes the source tree nodes being matched

- groups of template rules can be named
- engages a stylesheet-defined "mode" of transformation
- possible to selectively engage a particular mode when

pushing a given set of source tree nodes
- the stylesheet may rely on built-in templates

- not all source tree conditions have to be explicitly accommodated
- supports transformation of mixed content

- XML definition of character data interspersed with elements
- promotes customization and adaptation of other stylesheets

- fine-grained push-oriented templates can be exploited more easily than
monolithic pull-oriented templates

- supports source information from different document models
- if it is necessary to accommodate different input hierarchies in one transform

Very often a mixture can best produce the result required:
- pushing nodes through node event handlers

- preparing to accommodate the data in the order that it arrives
- flexibly allows instances from different document models to be accommodated

- pulling nodes from within the node event handlers
- pull information found in relative locations to those nodes that are being pushed

- handy loose rules of thumb:
- push when handling branch nodes
- pull when handling leaf nodes
- not a cut-and-dried rule, but works well as an initial assumption

Page 148 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using keys in XSLT
1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Note first that the generated id can easily be obtained of the first member in the table of a
given lookup value

- generate-id(key(key-qname, lookup-value)[1])
- recall that the generated identifier for a node is persistent through the execution of a

given stylesheet and that it operates on the first member of a given node set
- two nodes can be checked as being the same node by comparing their respective

generated identifiers
- the above use of "[1] " is redundant

For each key, starting with the primary key:
- find unique values of the key:

- find the generated id of the first entry of a given key's value in the <xsl:key> table
- find each node in the tree that is the first node of the key's unique value:

- when used as a predicate, the following expression finds all first matching members
of a location step resulting from the node test

- select=" axis-and-node-test[generate-id(.)=
 generate-id(key(key-qname, lookup-value)[1])]"

- the found nodes can be sorted if desired
- group-oriented processing can occur for each node selected as it represents each unique

value from the key table
- reselect all nodes in the tree matching the particular value:

- select="key(key-qname, lookup-value)"
- process the resulting current node set that represents the key's value set

- for example, do next level sort given the value found at this level
- for example, do the final result tree building based on key value

Page 423 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Copying source tree nodes
Chapter 4 - Processing model
Section 2 - Pull facilities

Often necessary to copy source tree nodes to the result tree:
- recall the illustration on page 137
- in XSLT use a deep-copy instruction

- <xsl:copy-of select=" XSLT-expression"/>
- <xsl:copy-of select=" XSLT-expression" copy-namespaces="no"/>

- only copy necessary namespaces required to express the nodes being copied
- unneeded namespaces for the element and its attributes are not copied

- copies all of the addressed nodes as nodes for the result tree (not values)
- copies all of the node's attached nodes and descendent nodes

- recursively copies all child nodes and their children to the bottom of the tree

Deep-copying addressed nodes from source to result:
- e.g. two construction nodes followed by all <p> element children of all <q> elements in

the source tree using the expression "//q/p "
- <h1>Question</h1><p>Summary</p><xsl:copy-of select="//q/p"/>
- if the copied nodes are elements, then the entire sub-tree below the element is copied

Convenient way to copy leaf nodes, e.g. all attributes:
- <xsl:copy-of select="@*"/>

Can accept any type of expression
- acts as string() or <xsl:value-of/> when the expression is not a node-set or result

tree fragment, adding the value to the result as a string of text

Page 149 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using keys in XSLT
1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The example XML source sorttest.xml is as follows:
01 <?xml version="1.0"?>
02 <names>
03 <name><given>Julie</given><surname>Holman</surname></name>
04 <name><given>Margaret</given><surname>Mahoney</surname></name>
05 <name><given>Ted</given><surname>Holman</surname></name>
06 <name><given>John</given><surname>Mahoney</surname></name>
07 <name><given>Kathryn</given><surname>Holman</surname></name>
08 <name><given>Ken</given><surname>Holman</surname></name>
09 </names>

Consider yet again the need to produce the following result, the original plus a sorted summary
grouped according to surname:
01 Holman, Julie
02 Mahoney, Margaret
03 Holman, Ted
04 Mahoney, John
05 Holman, Kathryn
06 Holman, Ken
07 ---
08 Holman:
09 Julie
10 Kathryn
11 Ken
12 Ted
13 Mahoney:
14 John
15 Margaret

Page 424 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing result text
Chapter 4 - Processing model
Section 2 - Pull facilities

Often necessary to add strings to the result tree:
- the "value of" instruction always returns a value of type string
- when in element content in the stylesheet use an instruction:

- <xsl:value-of select=" XSLT-expression"/>
- <xsl:value-of select=" XSLT-expression" separator=" AVT"/>
- <xsl:value-of select=" expr-1,...,expr-2" separator=" AVT"/>
- this instruction is always empty and never has a template
- <xsl:value-of> sequence-constructor</xsl:value-of>

- converts a sequence of text nodes into a single text node
- important where the cardinality of values must be one, not many

- when in attribute content in the stylesheet use an attribute value template (AVT):
- <elem attr="{ expr-1}">
- <elem attr="{ expr-1,..., expr-n}">
- typically used in the attributes of literal result elements
- supported in some attributes of some XSLT instructions

- most attributes of XSLT instructions are not attribute value templates
- <elem attr="http://{ expr-1}/{ expr-2}">

- multiple expressions in separate sets of brackets are allowed
- brace brackets surround each expression

- any XPath expression can be used
- <amt total="{($base + @fixed)*(1 + ancestor::order/@tax)}">

- an evaluated expression can be specified
- the total attribute is calculated as the sum of the base variable and the

current node's fixed attribute multiplied by the order ancestor's tax attribute
- literal brace brackets "{ " and "} " are specified as "{{ " and "}} "

Important difference between nodes and strings in a sequence
- two consecutive strings (including strings created as values of element nodes or other

data types) in a sequence are separated from each other with a space
- a node following a string, or two consecutive nodes, or a string following a node are not

separated by a space

A node-set expression is used to access one or more values from a tree
- recall the string value of each kind of node (page 92)
- value calculated is the empty string if the set of nodes is empty
- only first node in set (in document order) is used
- all values in the set in sequence order (and document order within sequence member)

are used
- the separator string separates non-text-node members in the resulting string
- the default separator is a single space
- the default separator cannot be overridden in an attribute value template

Page 150 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness using keys in XSLT
1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The following script group3.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--group3.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05 <!ENTITY pad " ">
06]>
07 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
08 version="1.0">
09 <xsl:output method="text"/>
10

11 <xsl:key name="names" match="name" use="surname"/>
12

13 <xsl:template match="/"> <!--root rule-->
14 <xsl:for-each select="/*/name"> <!--unsorted-->
15 <xsl:value-of select="concat(surname,', ',given)"/>
16 <xsl:text>&nl;</xsl:text></xsl:for-each>
17 <xsl:text>---&nl;</xsl:text>
18 <!--group sorted-->
19 <!--get the first node of each surname-->
20 <xsl:for-each select="/*/name
21 [generate-id(.)=generate-id(key('names',surname)[1])]">
22 <xsl:sort select="surname"/> <!--by primary key-->
23 <xsl:value-of select="surname"/>
24 <xsl:text>:&nl;</xsl:text>
25 <!--get all nodes for the given surname-->
26 <xsl:for-each select="key('names',surname)">
27 <xsl:sort select="given"/> <!--by secondary key-->
28 <xsl:text>&pad;</xsl:text>
29 <xsl:value-of select="given"/>
30 <xsl:text>&nl;</xsl:text>
31 </xsl:for-each>
32 </xsl:for-each>
33 </xsl:template>
34

35 </xsl:stylesheet>

Page 425 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing result text (cont.)
Chapter 4 - Processing model
Section 2 - Pull facilities

Consider the source fragment <email type="Current">...</email> :
- to use it in the following content of an element:

 <p>Current Email: </p>
- using a literal result element in XSLT:

01 <p><xsl:value-of select="@type"/> Email: </p>

or using an element instruction:
01 <xsl:element name="p">
02 <xsl:value-of select="@type"/>
03 <xsl:text> Email: </xsl:text>
04 </xsl:element>

- in XSLT the node's value is equivalent to data()
- in the absence of a schema and validation being turned on this is equivalent

to string()

Recall the process diagram (page 137)
- element construction nodes in the operation tree have XML instance baggage
- element nodes copied from the operation tree to the result tree will carry the namespace

nodes
- generated element nodes are created in isolation without any attached nodes
- will have all attached namespace nodes of ancestral namespace declarations that have

not been explicitly excluded using xsl:exclude-result-prefixes=
- e.g. those used for extension identification

Page 151 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness within sub-trees in
XSLT 1.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Typical use of the key table scopes key values across the entire document
- the key() function in XSLT 1.0 does not access only a sub-tree

Consider the following data in grpsub.xml :
- course contains lessons
- lessons contain frames
- frames distinguished by their applicability as stated in an attribute
- lessons and frames have titles authored by hand (note the white space)

01 <?xml version="1.0"?>
02 <course>
03 <lesson>
04 <title>
05 The XML family of Recommendations</title>
06 <frame id="xml-info" appl="a">
07 <title>
08 Extensible Markup Language (XML)</title>
09 </frame>
10 <frame id="xml-links" appl="b">
11 <title>
12 XML information links</title>
13 </frame>
14 ...
15 </lesson>
16 <lesson>
17 <title>
18 Transformation data flows</title>
19 <frame id="x2xml" appl="a">
20 <title>
21 Transformation from XML to XML</title>
22 </frame>
23 ...

Page 426 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Constructing result text (cont.)
Chapter 4 - Processing model
Section 2 - Pull facilities

Often necessary to get information more than once:
- source XML:

<email type="Current">gkholman@CraneSoftwrights.com</email>
- desired result:

<a href="mailto:gkholman@CraneSoftwrights.com"
>gkholman@CraneSoftwrights.com

- note how the element's content from the source has been used twice in the result
- prefixed by "mailto: " in the attribute
- in the element's content

Using a literal result element and attribute value template:
01
02 <xsl:value-of select="."/>
03

Using only instructions:
01 <xsl:element name="a">
02 <xsl:attribute name="href">
03 <xsl:text>mailto:</xsl:text>
04 <xsl:value-of select="."/>
05 </xsl:attribute>
06 <xsl:value-of select="."/>
07 </xsl:element>

Note:
- when building an attribute, the processor knows the end result is a string, so an expression

of multiple nodes adds the string value of each node
- the attribute to <xsl:value-of> is assumed to be an expression and therefore that

attribute cannot be specified with an attribute value template
- the use of brace brackets for an attribute value template is only detected inside an attribute

in the stylesheet
- cannot be used in element content of the stylesheet even when defining attributes

Page 152 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness within sub-trees in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The information grouped across the document, alphabetically by applicability, is as follows:
01 a
02 Extensible Markup Language (XML) 1.1
03 Some simple examples 3.1
04 Stylesheet association 1.10
05 Stylesheet requirements 4.1
06 Styling structured information 1.4
07 Templates and template rules 4.3
08 Three-tiered architectures 2.5
09 Transformation from XML to XML 2.1
10 b
11 Extensible Stylesheet Language Transformations (XSLT) 1.6
12 Historical development of the XSL and XSLT Recommendations 1.7
13 Instructions and literal result elements 4.2
14 Transformation from XML to XSL formatting semantics 2.2
15 XML information links 1.2
16 XML Path Language (XPath) 1.3
17 XSL information links 1.8
18 XSLT as an application front-end 2.4
19 c
20 Approaches to stylesheet design 4.6
21 Explicitly declared stylesheets 4.5
22 Extensible Stylesheet Language (XSL) 1.5
23 Implicitly declared stylesheets 4.4
24 Namespaces 1.9
25 Transformation from XML to non-XML 2.3

Page 427 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Serializing result text
Chapter 4 - Processing model
Section 2 - Pull facilities

If appropriate to the output method, all sensitive characters added to the result tree are escaped
when serialized

- '<' in text is escaped as '< ' or '< ' or '< ' or '< '
- '&' in text is escaped as '& ' or '& ' or '& '
- '>' in text is escaped as '> ' or '> ' or '> ' or '> '
- using CDATA sections as in '<![CDATA[<&>]]> '
- '" ' in an attribute may be escaped as '" ' or '" ' or '" '
- " ' " in an attribute may be escaped as '' ' or '' ' or '' '

Requesting no escaping in XSLT:
- can request escaping be suppressed on any sequence of text added to result tree
- <xsl:value-of select=" expression"

 disable-output-escaping="yes"/>
- the processor can choose to ignore the request
- escaping cannot be disabled when using attribute value templates
- use case is only for delivering non-XML markup (e.g. HTML) captured in XML

- an XML instance containing HTML in #PCDATA necessarily escapes sensitive
markup characters

- 01 <pages>
02 <page><![CDATA[
03 <html>
04 <body>
05
06 <hr>
07 </body>
08 </html>]]>
09 </page>
10 ...
11 </pages>

- output escaping would escape sensitive markup resulting in no browser recognition
of HTML, resulting in " " instead of " "

- disabling the output escape serializes the content "as is" with sensitive markup
characters ready to be recognized by downstream processes

- stylesheet writer takes the risk
- disabling the escaping of characters can result in the output not being well-formed
- not a typical requirement when transforming information for rendering purposes
- not using this feature will result in all output being well-formed

Page 153 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness within sub-trees in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

To group across the document, the key value is a simple value calculated from relative node
content

- use applicability attribute value as grouping criterion
01 <?xml version="1.0"?><!--grpsub.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06 <xsl:output method="text"/>
07

08 <xsl:key name="appls" match="frame" use="@appl"/>
09

10 <xsl:template match="/"> <!--root rule-->
11 <xsl:for-each select=
12 "//frame[generate-id(.)=generate-id(key('appls',@appl)[1])]">
13 <xsl:sort select="@appl"/> <!--alphabetical group order-->
14 <xsl:text> </xsl:text>
15 <xsl:value-of select="@appl"/> <!--show group title-->
16 <xsl:text>&nl;</xsl:text>
17 <xsl:for-each select="key('appls',@appl)"><!--all in group-->
18 <xsl:sort select="normalize-space(title)"/>
19 <xsl:text> </xsl:text>
20 <xsl:value-of select="normalize-space(title)"/>
21 <xsl:text> </xsl:text>
22 <xsl:number count="lesson|frame" level="multiple"/>
23 <xsl:text>&nl;</xsl:text>
24 </xsl:for-each>
25 </xsl:for-each>
26 </xsl:template>
27

28 </xsl:stylesheet>

Page 428 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sample text generation
Chapter 4 - Processing model
Section 2 - Pull facilities

XSLT examples of obtaining source node tree values are as follows:
1 <xsl:value-of select="name(.)"/>

- inject the expanded name 'prefix: local' of the current node
2 <xsl:value-of select="string(.)"/>

- inject the lexical value of the current source tree node
3 <xsl:value-of select="data(.)"/>

- inject the schema-qualified value of the current source tree node
4 <xsl:value-of select="."/>

- inject the schema-qualified value of the current source tree node
5 <xsl:value-of select="$n//partNbr"/>

- inject the value of the first of all descendent elements named partNbr
- inject the value of all descendent elements named partNbr , separated by a single

space between each
6 <xsl:value-of select="preceding-sibling::partNbr[1]"/>

- inject the value of the closest of all preceding sibling elements named partNbr
- note the "[1] " is applied to the step, therefore it is in proximity order

7 <xsl:value-of select="preceding-sibling::partNbr"/>
- inject the value of the farthest of all preceding sibling elements named partNbr

- note the "first" is applied to the path, therefore it is in document order
- inject the value of all preceding sibling elements named partNbr , in document

order, separated by a single space between each
8 <xsl:value-of select="(//module[3]

 /lesson[@type='exercise'][last()]
 /frame/title)[1]"/>

- inject the first title of a frame of the last lesson with an attribute node named "type "
with the value "exercise ", where that lesson is found in the third chapter

- note the arbitrary use of white space between tokens of the XPath expression
- important performance note

- the use of "// " here is very wasteful in that the processor will look at every
branch of the source node tree looking for module elements and will not just
stop at the apex of the sub-tree beginning with module

- while it is very intuitive to write "// ", using this when it isn't needed could
be the biggest source of poor performance

- the time to use "// " is when it is necessary to visit every node in every branch
of the source node tree (e.g. for index items)

- some processors look for and optimize such behaviors with lookup tables

Recall the table of node values and names (page 92)
- each node has a value and may have a name

Page 154 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness within sub-trees in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The information grouped under each lesson, alphabetically by lesson and then alphabetically
by applicability, is as follows:

- the lesson information is not composite, so grouping isn't needed
- the applicability information is composite, so grouping is needed

01 Stylesheet examples
02 a
03 Some simple examples 3.1
04 Syntax basics - stylesheets, templates, instructions
05 a
06 Stylesheet requirements 4.1
07 Templates and template rules 4.3
08 b
09 Instructions and literal result elements 4.2
10 c
11 Approaches to stylesheet design 4.6
12 Explicitly declared stylesheets 4.5
13 Implicitly declared stylesheets 4.4
14 The XML family of Recommendations
15 a
16 Extensible Markup Language (XML) 1.1
17 Stylesheet association 1.10
18 Styling structured information 1.4
19 b
20 Extensible Stylesheet Language Transformations (XSLT) 1.6
21 Historical development of the XSL and XSLT Recommendations 1.7
22 XML information links 1.2
23 XML Path Language (XPath) 1.3
24 XSL information links 1.8
25 c
26 Extensible Stylesheet Language (XSL) 1.5
27 Namespaces 1.9
28 Transformation data flows
29 a
30 Three-tiered architectures 2.5
31 Transformation from XML to XML 2.1
32 b
33 Transformation from XML to XSL formatting semantics 2.2
34 XSLT as an application front-end 2.4
35 c
36 Transformation from XML to non-XML 2.3

Page 429 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Repositioning using "pull"
Chapter 4 - Processing model
Section 2 - Pull facilities

One can reposition to each of a set of selected source tree nodes:
01 <xsl:for-each select=" node-set-expression">
02 template
03 </xsl:for-each>

 One can reposition to each of a sequence of arbitrary items (nodes or atomic values):
01 <xsl:for-each select=" sequence-expression">
02 template
03 </xsl:for-each>

- instruction element encapsulates a template to add for each new position
- instruction attribute specifies which nodes or values make up the selected node set
- the stylesheet dictates the order and content of the result tree

The context item focus ". " is the new position for the XSLT template
- the <xsl:for-each> instruction's attribute is evaluated with the current node in the

current context list of the template in which it is found
- in the first example above "@type" is evaluated relative to the "email " element

node, not to the parent node that was the current node when the repositioning was
started

- instructions within the template are evaluated using each of the nodes selected
- the set of items selected becomes the current context list

- the number of members is exposed in the last() function
- each member of the set takes a turn as the current node

- the position of each member is exposed in the position() function
- any nodes are in document order or sequence order unless the first instructions of

the template are sort instructions
- when ". " is not a node, there is no definition of "/ "
- the evaluation context is restored at the end of <xsl:for-each> to that context in place

when the instruction was executed

All items are visited without exception
- to visit only a subset of items, only that subset must be specified in the expression
- one often uses a predicate in the expression to specify which ones are included

Page 155 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness within sub-trees in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

To group under a sub-tree using variables, only those items in the sub-tree are subject to the
algorithm:
01 <?xml version="1.0"?><!--grpsub2.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06 <xsl:output method="text"/>
07

08 <xsl:template match="/"> <!--root rule-->
09 <xsl:for-each select="//lesson"> <!--group under each lesson-->
10 <xsl:sort select="normalize-space(title)"/>
11 <xsl:value-of select="normalize-space(title)"/>
12 <xsl:text>&nl;</xsl:text>
13

14 <xsl:variable name="frames" select="frame"/>
15 <xsl:for-each select="$frames"> <!--each group-->
16 <xsl:sort select="@appl"/> <!--alphabetical group order-->
17 <xsl:variable name="appl" select="@appl"/>
18 <xsl:if test="generate-id(.)=
19 generate-id($frames[@appl=$appl])">
20 <xsl:text> </xsl:text>
21 <xsl:value-of select="@appl"/> <!--show group title-->
22 <xsl:text>&nl;</xsl:text>
23 <xsl:for-each select="$frames[@appl=$appl]"><!--in grp-->
24 <xsl:sort select="normalize-space(title)"/>
25 <xsl:text> </xsl:text>
26 <xsl:value-of select="normalize-space(title)"/>
27 <xsl:text> </xsl:text>
28 <xsl:number count="lesson|frame" level="multiple"/>
29 <xsl:text>&nl;</xsl:text>
30 </xsl:for-each>
31 </xsl:if>
32 </xsl:for-each>
33 </xsl:for-each>
34 </xsl:template>
35

36 </xsl:stylesheet>

Page 430 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Repositioning using "pull" (cont.)
Chapter 4 - Processing model
Section 2 - Pull facilities

An example with nodes:
01 <xsl:for-each select="/card/email">
02 <p><xsl:value-of select="position()"/> of
03 <xsl:value-of select="last()"/>:
04 <xsl:value-of select="@type"/> Email:
05 <a><xsl:attribute name="href">
06 <xsl:text>mailto:</xsl:text>
07 <xsl:value-of select="."/>
08 </xsl:attribute>
09 <xsl:value-of select="."/>
10 </p>
11 </xsl:for-each>

An example with atomic values:
01 <xsl:for-each select="'abc.com','def.net','ghi.org'">
02
03 <xsl:text>http://www.</xsl:text>
04 <xsl:value-of select="."/>
05
06 <xsl:if test="position()!=last()">, </xsl:if>
07 </xsl:for-each>

Page 156 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness within sub-trees in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

When working with key tables, values need not be solely constructed from node content
- values can be concatenated values from other sources relative to the node or generated

from the node
- care must be taken to prevent ambiguous value calculations

- the resulting concatenation of two values must not conflict with a third value
- generate-id() produces a lexical name token that cannot have spaces

- a space is a viable delimiter of generated identifier values
- build table entry as a concatenation of three values:

- generated identifier of the ancestral point in the hierarchy
- the space

- guaranteed to not be in the generated identifier
- distinguishing node value
- must lookup the table with the ancestral generated identifier or node value will not

be found

Use of internal general entities can help work with complex code
- the algorithm for generating a key table node entry's value can be declared once and

reused
- important for readability
- important for maintainability

Page 431 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Card sample pull transforms
Chapter 4 - Processing model
Section 2 - Pull facilities

Recall the transformation objective (page 145) using the given data (page 144)

The file cardpull.xsl illustrates the pull approach using a simplified stylesheet with only
a result tree template:
01 <?xml version="1.0"?><!--cardpull.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <html xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 xsl:version="1.0">
05 <center><u>Electronic Contact Information</u></center>
06 <p>Name: <xsl:value-of select="/card/name"/></p>
07 <xsl:for-each select="/card/email">
08 <p>
09 <xsl:value-of select="@type"/>
10 <xsl:text> Email: </xsl:text>
11 <xsl:value-of select="."/>
12 </p>
13 </xsl:for-each>
14 <center><u>Postal Contact Information</u></center>
15 <p>Name: <xsl:value-of select="/card/name"/></p>
16 <p>Address: <xsl:value-of select="/card/address"/></p>
17 </html>

Of note:
- the "/card/* " addresses could equally as well have been "card/* " addresses because

the current node for the transformation is the root node
- no use of <xsl:apply-templates/> because there are only built-in template rules and

no user template rules in a simplified stylesheet

Page 157 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness within sub-trees in
XSLT 1.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

To group under a sub-tree using XSLT keys, the key value is a calculated from the identifier
of the apex node combined with the relative node content (note the use of internal parsed
general entities to promote consistency):
01 <?xml version="1.0"?><!--grpsub3.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">
04 <!--group under ancestral lesson by applicability attribute-->
05 <!ENTITY frame-lookup
06 "concat(generate-id(ancestor::lesson),' ',@appl)">
07 <!ENTITY frame-group "key('appls', &frame-lookup;)">
08 <!ENTITY frame-group-first
09 "frame[generate-id(.)=generate-id(&frame-group;[1])]">]>
10 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
11 version="1.0">
12 <xsl:output method="text"/>
13

14 <xsl:key name="appls" match="frame" use="&frame-lookup;"/>
15

16 <xsl:template match="/"> <!--root rule-->
17 <xsl:for-each select="//lesson"> <!--group under each lesson-->
18 <xsl:sort select="normalize-space(title)"/>
19 <xsl:value-of select="normalize-space(title)"/>
20 <xsl:text>&nl;</xsl:text>
21 <xsl:for-each select="&frame-group-first;"> <!--each group-->
22 <xsl:sort select="@appl"/> <!--alphabetical group order-->
23 <xsl:text> </xsl:text>
24 <xsl:value-of select="@appl"/> <!--show group title-->
25 <xsl:text>&nl;</xsl:text>
26 <xsl:for-each select="&frame-group;"> <!--all in group-->
27 <xsl:sort select="normalize-space(title)"/>
28 <xsl:text> </xsl:text>
29 <xsl:value-of select="normalize-space(title)"/>
30 <xsl:text> </xsl:text>
31 <xsl:number count="lesson|frame" level="multiple"/>
32 <xsl:text>&nl;</xsl:text>
33 </xsl:for-each>
34 </xsl:for-each>
35 </xsl:for-each>
36 </xsl:template>
37

38 </xsl:stylesheet>

Page 432 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Repositioning using "push"
Chapter 4 - Processing model
Section 3 - Push facilities

Classical event-processing scheme in XSLT

Generate zero to many events:
01 <xsl:apply-templates select=" node-set-expression">

- selects the nodes that dictate the construction of the next portion of the result tree
- the set of nodes selected becomes the current node list for the processing of each node

- each member of the set takes a turn as the current node
- the nodes are in document order unless the first instructions of the template are sort

instructions
- the select= attribute is optional

- assumes select="node()" when absent
- the current node list becomes all child nodes of the current node

- attribute and namespace nodes of the source node tree are not implicitly visited
- must explicitly be visited under stylesheet control by selecting the nodes

desired
- the data dictates the order and content of the result tree
- the evaluation context is restored at the end of <xsl:apply-templates> to that context

in place when the instruction was executed
- typically used only inside branch (root and element) templates, not inside leaf templates

- leaf nodes have no child nodes to be processed
- not an error to ask non-existent child nodes to be processed
- might be used to from a leaf node to process absolutely-addressed nodes, nodes

relative to the parent node, or the current leaf node in another collection of template
rules

- nodes from a temporary tree variable can be selected
- unlike the restriction for XSLT 1.0 of not selecting result tree fragment nodes

All nodes are pushed at the stylesheet, without exception
- to push only a subset of nodes, only that subset must be specified in the expression
- one often uses a predicate in the expression to specify which ones are included

Page 158 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

When to use different grouping methods
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

When using XSLT 1.0
- adjacent grouping

- use the axis-based method
- only need to look at adjacent members of the set for a group

- uniqueness grouping with single document-wide context
- use either the variable-based or the key-based method
- if the implementation is optimized, the key-based method might be a bit faster than

the variable-based method
- the variable-based method might be more intuitive to the reader

- uniqueness grouping with partial-document context
- use the variable-based method
- easy to set the context of the grouping to any subset of the tree by addressing the

desired nodes in a variable binding
- establishing the uniqueness criteria for key-based grouping may be too awkward

or time-consuming and may make the resulting logic too difficult to maintain
- uniqueness grouping with multiple-document context

- use the variable-based method
- easy to set the context of the grouping to any set of nodes collected from multiple

trees by using document()

Page 433 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Repositioning using "push" (cont.)
Chapter 4 - Processing model
Section 3 - Push facilities

Handle events:
01 <xsl:template match=" node-set-pattern">
02 template
03 </xsl:template>

- the template constructing the next part of the result tree when given nodes are visited
- the match= pattern does not need to be equivalent to the select= pattern that was

used in <xsl:apply-templates>
- nodes and their contexts as described in the pattern are evaluated in the context of

the source tree
- the template rules can be grouped

- collections of template rules called "modes"
- described later in this chapter

- built-in template rules can be assumed
- every node matched even if no match in the stylesheet

- described later in this chapter
- template conflict resolution rules apply for ambiguous template matching

- cannot have more than one event handler that is a candidate for being triggered for
visiting a given node (described later in this chapter)

- the nature of the pattern and additional attributes in the stylesheet control matching
nuances

- the template rules can be prioritized
- the shape of the pattern governs implicit priority

- described later in this chapter
- the template rule's template result can be constrained

- the nodes created as a result of processing the template can be checked for
correctness

- described in Chapter 6 Transform and data management (page 209)
- the template rule can be named

- invoked on demand by the stylesheet as well as required by the nodes selected from
the source node tree

- described in Chapter 6 Transform and data management (page 209)
- the template rule's template can be parameterized

- variables whose bound values can be passed by the process invoking the template
- described in Chapter 6 Transform and data management (page 209)

Page 159 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Built-in grouping facilities in XSLT 2.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

 <xsl:for-each-group select=" population-expression"
...grouping-criteria...>

...multiple <xsl:sort> instructions...

...template...
 </xsl:for-each-group>

The objective is to find the first member of each group based on grouping criteria
- select= attribute specifies which nodes or values make up the population
- exactly one of the following four grouping schemes must be chosen

- group-adjacent=" expression"
- creates a single grouping key based on adjacent values being equal strings
- an error is signaled if the expression does not return a sequence of exactly

one item per member
- group-by=" sequence-expression"

- calculate one grouping value for each expression in the sequence
- the item is placed in as many groups as there are expressions

- when the resulting groups are visited, a given item might be found in up to
as many groups as there are members of the sequence

- group-starting-with=" match-pattern"
- nodes in the population are examined in population order
- each successful match to given pattern starts a new group for the current node
- the node is then added to the current group

- group-ending-with=" match-pattern"
- nodes in the population are examined in population order
- the node is then added to the current group
- each successful match to given pattern starts a new group for the next node

- collation=" uri-string-AVT" overrides any default collation
- used when comparing strings to be equal or not

group-starting-with= and group-ending-with= are suited to inferring structure from
flat information

- where groups of items are separated by sibling elements rather than by parent elements
- e.g. XHTML heading elements are siblings of content under the heading, not parents of

content under the heading

Page 434 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Repositioning using "push" (cont.)
Chapter 4 - Processing model
Section 3 - Push facilities

For example, in the objective of this sample the processing of the root node can ask the XSLT
processor to look for template rules for all child element nodes named "card ", thus the
document element must be named "card " (reduces the chance of stylesheet abuse):
01 <xsl:template match="/"> <!--process root node-->
02 <xsl:apply-templates select="card"/> <!--assume doc. element name-->
03 </xsl:template>

The XSLT processor finds the template rule for a document element named card , adds to the
result tree and then processes child nodes:
01 <xsl:template match="card">
02 <center><u>Electronic Contact Information</u></center>
03 <xsl:apply-templates/>
04 </xsl:template>

In turn, having found an email child element node, the processor will find the template rule
for that element:
01 <xsl:template match="email"> <!--generate a mailto:-->
02 <p><xsl:value-of select="@type"/>
03 <xsl:text> Email: </xsl:text>
04
05 <xsl:apply-templates/>
06
07 </p>
08 </xsl:template>

In this recursive-like process:
- the <xsl:template> constructs set up the event handlers to handle the set of nodes

selected in <xsl:apply-templates>
- either explicitly a node set using a select= expression or implicitly just the child

nodes
- the context continually is changed and restored as the node tree is traversed
- the data dictates the order in which templates are processed
- each template is added to the result tree thus creating the result tree parse order

The order of template rules is not important (except in error recovery)
- all template rules are at the "top" of the stylesheet tree, so have equal weight
- order comes into play only for error recovery in ambiguous template matching

Page 160 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Built-in grouping facilities in XSLT 2.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Any <xsl:sort> in <xsl:for-each-group> sorts the processing of the groups
- does not affect the processing of the members of the group

The context item inside the <xsl:for-each-group> is the first member of the group in
population order

- one can address values off of the first member

Functions available when grouping:
- these functions have no return values outside of the context of a <xsl:for-each-group>

 current-grouping-key()

- returns the value that forms the basis of the group
- prevents having to recalculate the group-by= expression

 current-group()

- returns a guaranteed non-empty sequence of items found in the group associated with
the current-grouping-key() value

- typically accessed using <xsl:for-each> possibly containing <xsl:sort> instructions
for the group members

- items in the group are returned in input sequence order
- beware rearranging the items inadvertently:

- 01 <xsl:for-each select="current-group()">
02 <xsl:value-of select="@p"/>
03 </xsl:for-each>
vs
01 <xsl:value-of select="current-group()/@p"/>

Page 435 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Repositioning using "push" (cont.)
Chapter 4 - Processing model
Section 3 - Push facilities

Recall that every XML document can be input to any XSLT stylesheet
- e.g. an instance with <invoice> can be passed to the example stylesheet
- without an explicit push in a template for the root node, the built-in template rules will

automatically engage the nested template processing

Pushing the document element from the root note protects the stylesheet from abuse
- only instances with <card> produce non-empty output

Resulting file not acceptable as a document entity for use downstream
- a document entity must have a document element to be well-formed
- an empty file is still acceptable as an external parsed general entity

Namespaces further protect a stylesheet from abuse
- using only <card> without namespaces could be ambiguous
- consider a greeting card instances as follows:

01 <card xmlns="http://www.mycompany.org/ns/greeting">
- and a business card instances as follows:

01 <card xmlns="http://www.mycompany.org/ns/business">
- these can be distinguished in a business card stylesheet as follows:

01 xmlns:bc="http://www.mycompany.org/ns/business"
02 ...
03 <xsl:template match="/">
04 <xsl:apply-templates select="bc:card"/>
05 ...
06 <xsl:template match="bc:card">

Page 161 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Adjacent grouping in XSLT 2.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The example XML source sorttest.xml is as follows:
01 <?xml version="1.0"?>
02 <names>
03 <name><given>Julie</given><surname>Holman</surname></name>
04 <name><given>Margaret</given><surname>Mahoney</surname></name>
05 <name><given>Ted</given><surname>Holman</surname></name>
06 <name><given>John</given><surname>Mahoney</surname></name>
07 <name><given>Kathryn</given><surname>Holman</surname></name>
08 <name><given>Ken</given><surname>Holman</surname></name>
09 </names>

Consider the need to produce the following result, the original and sorted summary, grouped
omitting adjacent surnames:
01 Holman, Julie
02 Mahoney, Margaret
03 Holman, Ted
04 Mahoney, John
05 Holman, Kathryn
06 Holman, Ken
07 ---
08 Holman Julie
09 Mahoney Margaret
10 Holman Ted
11 Mahoney John
12 Holman Kathryn
13 Ken

Note above how only the last prefix is omitted because the only adjacent common surnames
are at the end of the original list of names.

Page 436 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Empty templates
Chapter 4 - Processing model
Section 3 - Push facilities

Sometimes necessary to add nothing to the result tree:
- all events must be handled even if not wanted

- built-in template rules may add information to the result tree when not desired
- a stylesheet template rule overrides a built-in template rule

- no different in principle than a non-empty template
- the instruction itself is empty (i.e. has no children), so the empty template is added

to the result
01 <!--suppress the address-->
02 <xsl:template match="address"></xsl:template>

According to XML rules for empty elements, the above markup is no different than the
following (though the preceding may be more easily comprehended by a reader of the
stylesheet):
01 <xsl:template match="address"/> <!--suppress the address-->

According to XSLT rules for ignored comments and white-space-only text nodes, the above
markup is no different than the following (though they are distinctly different in XML terms):
01 <xsl:template match="address"> <!--suppress the address-->
02 </xsl:template>

Page 162 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Adjacent grouping in XSLT 2.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The following script groupx2adj.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--groupx2adj.xsl-->
02 <!--XSLT 2.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05 <!ENTITY pad " ">
06]>
07 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
08 version="2.0">
09 <xsl:output method="text"/>
10

11 <xsl:template match="/"> <!--root rule-->
12 <xsl:for-each select="/*/name"> <!--unsorted-->
13 <xsl:value-of select="concat(surname,', ',given)"/>
14 <xsl:text>&nl;</xsl:text>
15 </xsl:for-each>
16 <xsl:text>---&nl;</xsl:text>
17

18 <xsl:for-each-group select="/*/name"
19 group-adjacent="surname"> <!--by surname-->
20 <!--first in the group must be different from previous-->
21 <xsl:value-of select="concat(surname,
22 substring('&pad;',string-length(surname)+1),given)"/>
23 <xsl:text>&nl;</xsl:text>
24 <xsl:for-each select="current-group()[position()>1]">
25 <!--omit surname if not the first in adjacent group-->
26 <xsl:value-of select="concat('&pad;',given)"/>
27 <xsl:text>&nl;</xsl:text>
28 </xsl:for-each>
29 </xsl:for-each-group>
30 </xsl:template>
31

32 </xsl:stylesheet>

Of note:
- each displayed surname is followed by the number of spaces needed to fill out the padding

string
- this creates a virtual tab stop in the text output

Page 437 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Modes
Chapter 4 - Processing model
Section 3 - Push facilities

Collections of template rules can be made:
- mode="mode-qname"

- in <xsl:apply-templates/> to indicate which collection to use
- in <xsl:template> to indicate which collection of membership

- when mode= is not specified, the unnamed collection "#default " is used
- the "#default " mode cannot be specified explicitly

- the initial mode for the processing of the root node can be specified
- when not specified, the "#default " mode is used

- <xsl:apply-templates/> can use mode="#current"
- the mode in play when the last match occurred is used

- <xsl:template> can use mode="#all" or mode="mode-list"
- the template matches based on match criteria regardless of the mode in play

For example, consider in the objective to process one set of templates for the electronic
information and a second set of templates for the postal information where the same match
patterns are needed in both processes:
01 <xsl:template match="/"> <!--process entire instance twice-->
02 <xsl:apply-templates select="card"/>
03 <xsl:apply-templates select="card" mode="postal"/>
04 </xsl:template>
05 <!--electronic info-->
06 <xsl:template match="card">
07 <!--template here-->
08 </xsl:template>
09 <!--postal info-->
10 <xsl:template match="card" mode="postal">
11 <!--template here-->
12 </xsl:template>

The root rule above processes the document element twice, once in each of two different modes
- every execution of <xsl:apply-templates> will only use those <xsl:template>

rules with the matching mode attribute

Without modes each template would have complex context calculations
- by using separate collections each collection can be treated as a mini-stylesheet
- modes can be changed at any time
- there can be any number of modes each reflecting different requirements of the stylesheet

without having to accommodate other requirements

Page 163 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Adjacent grouping in XSLT 2.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Unobvious criteria can be used for adjacent grouping
- any expression can be used in group-adjacent=
- the resulting value is associated with the node being grouped

Consider the need to create pairs of nodes from any sequence of nodes
- use the same numeric value for adjacent nodes in the sequence
- group adjacent based on the numeric values
- 01 <table>

02 <xsl:for-each-group select="items/item"
03 group-adjacent="(position()-1) idiv $cols">
04 <row>
05 <xsl:for-each select="current-group()">
06 <col><xsl:value-of select="."/></col>
07 </xsl:for-each>
08 </row>
09 </xsl:for-each-group>
10 </table>

From a sequence of items:
- 01 <items>

02 <item>a</item>
03 <item>b</item>
04 <item>c</item>
05 <item>d</item>
06 <item>e</item>
07 </items>

To a sequence of paired items:
- 01 <table>

02 <row>
03 <col>a</col>
04 <col>b</col>
05 </row>
06 <row>
07 <col>c</col>
08 <col>d</col>
09 </row>
10 <row>
11 <col>e</col>
12 </row>
13 </table>

Page 438 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Built-in template rules
Chapter 4 - Processing model
Section 3 - Push facilities

XSLT specifies built-in template rules that are assumed to be a part of all stylesheets
- when the processor can't match a stylesheet template rule to a given node, a built-in

template rule is used
- the built-in templates are documented below using XSLT 2.0 concepts of "#all " and

"#current " but the documentation applies equivalently (just not as elegantly) to built-in
templates specified in XSLT 1.0

When there is no explicit template rule for the root node or an element node, the following
built-in rule will be assumed by the XSLT processor with an implicit mode= attribute of the
current mode:

- note how attributes are not pushed by built-in templates, they must be explicitly pushed
or processed by the stylesheet

01 <xsl:template mode="#all" match="*|/">
02 <xsl:apply-templates mode="#current"/>
03 </xsl:template>

- in XSLT 1.0 any passed parameters are not passed along
- in XSLT 2.0 all passed parameters are passed along

When there is no explicit template rule for a text or attribute node, the following built-in rule
will be assumed by the XSLT processor to add the leaf node's value to the result tree:
01 <xsl:template mode="#all" match="text()|@*">
02 <xsl:value-of select="."/>
03 </xsl:template>

When there is no explicit rule for a comment or processing-instruction node, the following
empty built-in rule will be assumed by the XSLT processor and, when triggered, it specifies
that nothing is to be added to the result tree:
01 <xsl:template mode="#all" match="comment()|processing-instruction()"/>

All namespace nodes are also ignored (as there is no pattern with which to recognize them in
a match attribute). Namespace nodes are added to the result tree piggybacked on element nodes
being copied to the result tree and as a result of instructions synthesizing result tree nodes.

Page 164 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness in XSLT 2.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The following script groupx2by.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--groupx2by.xsl-->
02 <!--XSLT 2.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05 <!ENTITY pad " ">
06]>
07 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
08 version="2.0">
09 <xsl:output method="text"/>
10

11 <xsl:template match="/"> <!--root rule-->
12 <xsl:for-each select="/*/name"> <!--unsorted-->
13 <xsl:value-of select="concat(surname,', ',given)"/>
14 <xsl:text>&nl;</xsl:text></xsl:for-each>
15 <xsl:text>---&nl;</xsl:text>
16

17 <xsl:for-each-group select="/*/name"
18 group-by="surname"> <!--group sorted-->
19 <xsl:sort select="surname"/> <!--by primary key-->
20

21 <xsl:value-of select="current-grouping-key()"/>
22 <xsl:text>:&nl;</xsl:text>
23 <!--reselect only nodes with current primary key-->
24 <xsl:for-each select="current-group()">
25 <xsl:sort select="given"/> <!--by secondary key-->
26 <xsl:text>&pad;</xsl:text>
27 <xsl:value-of select="given"/>
28 <xsl:text>&nl;</xsl:text>
29 </xsl:for-each>
30 </xsl:for-each-group>
31 </xsl:template>
32

33 </xsl:stylesheet>

Of note:
- select="current-grouping-key()" could be select="surname"

- identical result because of simple calculation of the grouping key

Page 439 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Template rule conflict resolution
Chapter 4 - Processing model
Section 3 - Push facilities

Template rule selection must be unambiguous:
- separate collections of rules are distinguished by the mode used at select time
- more than one matching rule in a given collection of rules is an error

- the XSLT process must only match a single template rule for each event
- it is the stylesheet writer's responsibility to not confuse the processor

- must only supply a single template rule for every event or rely on the built-in
templates for an event not explicitly handled

- multiple hierarchical relationships can often be ambiguous
- template rule matching patterns are often written with hierarchies specifying the

context of nodes
- when one hierarchy is a strict subset of the other hierarchy then both hierarchies

are candidates for a node that is found in the subset

Important portability issue
- the XSLT processor is not required to report a template conflict error condition

- if not reported, it is required to use the last template rule found in the stylesheet
that matches the source tree node

- a stylesheet apparently successfully running using one XSLT processor not reporting
template conflict errors will not run in another XSLT processor that chooses to
report such errors

Page 165 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping under uniqueness in XSLT 2.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Each item in the population can be put into more than one group
- the group-by= attribute can be a sequence of multiple group value calculations
- the item shows up in each group based on the result of each calculation

01 <xsl:variable name="grouptest" as="element()+">
02 <x id="a" val="1"/>
03 <x id="b" val="2"/>
04 <x id="c" val="3"/>
05 <x id="d" val="4"/>
06 <x id="e" val="5"/>
07 <x id="f" val="6"/>
08 <x id="g" val="7"/>
09 <x id="h" val="8"/>
10 <x id="i" val="9"/>
11 </xsl:variable>
12 <xsl:for-each-group select="$grouptest"
13 group-by="@val + 1, @val + 2, @val mod 4">
14 <xsl:sort select="current-grouping-key()"/>
15 <xsl:text>
16 </xsl:text>
17 <xsl:value-of select="current-grouping-key()"/>: <xsl:text/>
18 <xsl:value-of select="current-group()/@id" separator=", "/>
19 </xsl:for-each-group>

Exposing the groups created shows the items in different groups
- e.g. the node with identifier "a" is in groups 1, 2 and 3

01 0: d, h
02 1: a, e, i
03 2: a, b, f
04 3: a, b, c, g
05 4: b, c
06 5: c, d
07 6: d, e
08 7: e, f
09 8: f, g
10 9: g, h
11 10: h, i
12 11: i

Page 440 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Template rule conflict resolution (cont.)
Chapter 4 - Processing model
Section 3 - Push facilities

Every template rule has a priority:
- used by the XSLT processor to avoid conflict within a given collection of template rules

- helpful when specifying multiple template rules with subsets of matching conditions
- highest priority wins

- the processor chooses the matching template rule within the given collection that
has the highest explicit or implicit numeric priority value

- explicit priority specified by user
- a floating point number value
- <xsl:template match=" match-pattern"

 priority=" numeric-value">
- implicit priority assumed based on pattern specificity when priority= is not specified:

- -.5 for patterns comprised of only a wildcard or node kind
- wildcards: "* " or "@*"
- wildcards: element() , element(*) , attribute() , attribute(*)
- node types: node() , comment() , processing-instruction() or text()

- -.25 for patterns comprised of a namespace prefix and a wildcard
- "prefix:* "
- *: prefix

- 0 for patterns comprised of only a node's name or only a data type
- un-prefixed or child:: axis for an element
- prefixed with "@" or attribute:: axis for an attribute
- with or without a namespace prefix
- a literal in processing-instruction(PI-target)
- the patterns element(name) , element(*, type) , attribute(name) or

attribute(*, type)
- +.25 for patterns comprised of both a name and a data type

- the patterns element(name, type) , element(name, type) ,
attribute(name, type) or attribute(name, type)

- +.5 for all other patterns
- nuance between XSLT 1.0 and XSLT 2.0 matching a document node "/ "

- value of +.5 in XSLT 1
- value of -.5 in XSLT 2

A union match pattern for a template rule is handled severally
- the processor will regard each of the patterns separately as if they were present

individually in copies of the template rule

Page 166 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping flat information in XSLT 2.0
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The following script groupx2flat.xsl accomplishes the desired result:
01 <?xml version="1.0"?><!--groupx2flat.xsl-->
02 <!--XSLT 2.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05 <!ENTITY pad " ">
06]>
07 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
08 version="2.0">
09 <xsl:output method="text"/>
10

11 <xsl:template match="/"> <!--root rule-->
12 <xsl:for-each-group select="/*/*"
13 group-starting-with="generation">
14 <xsl:value-of select="."/>
15 <xsl:text/>(<xsl:value-of select="count(current-group())-1"/>
16 <xsl:text>):&nl;</xsl:text>
17 <!--reselect only those nodes that are names-->
18 <xsl:for-each select="current-group()[self::name]">
19 <xsl:sort select="surname"/> <!--by primary key-->
20 <xsl:sort select="given"/> <!--by secondary key-->
21 <xsl:value-of select="' ',given,surname"/>
22 <xsl:text>&nl;</xsl:text>
23 </xsl:for-each>
24 </xsl:for-each-group>
25 </xsl:template>
26

27 </xsl:stylesheet>

Of note:
- each group contains the node that triggered the group and the nodes that did not trigger

the next group
- requires the count(current-group())-1 to reflect the count without the grouping

trigger
- count(current-group[self::name]) would work just as well

Page 441 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Template rule conflict resolution (cont.)
Chapter 4 - Processing model
Section 3 - Push facilities

Consider an example of a typographical vocabulary
- the element figure specifies a figure reference with a security attribute
- the element para specifies a paragraph of content
- the elements are in the vocabulary identified by a book URI

01 <book:para security="classified">
02 Components: <book:figure security="top" image="missile.gif"/>
03 </book:para>

The rendering of figures differs based on context
- when found outside a paragraph

- perhaps it is rendered centered on the line, with a hotlink to a description
- when found inside a paragraph

- perhaps it is rendered inline to the paragraph, with a hotlink to a description
- when it has a security attribute regardless of context

- perhaps it is to be elided entirely if considered top secret
- each of the above contexts requires a different template rule, but all must be active to

accommodate all of the different situations
- can only be distinguished unambiguously by using priority

Without priority, all of the following rules would conflict for the processing of a figure when
that figure is in a paragraph and it has the security attribute value of "top ":
01 <xsl:template match="b:figure[@security='top']" priority="2"/>
02

03 <xsl:template match="b:para/b:figure"><!--implied priority=".5"-->
04

05 <xsl:template match="b:figure"><!--implied priority="0"-->
06

07 <xsl:template match="b:*"><!--implied priority="-.25"-->
08

09 <xsl:template match="*"><!--implied priority="-.5"-->

Note that without explicit priority:
- the first two rules above would both have the implicit value of .5 for priority
- a processor not reporting the conflict would always process the second of the two rules

for figures found in paragraphs

Rule of thumb:
- the more specific or important the matching pattern relative to other candidate matching

patterns, the higher the specified priority must be

Page 167 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping flat information in XSLT 2.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

Consider the need to create a hierarchy from flat XHTML:
01 <?xml version="1.0"?>
02 <html xmlns="http://www.w3.org/1999/xhtml">
03 <head><title>Test</title></head>
04 <body>
05 <p>Outside of any level</p>
06 <h1>First level 1</h1>
07 <p>Level 1 text</p>
08 <p>Level 1 text</p>
09 <p>Level 1 text</p>
10 <h2>Second level 1.1</h2>
11 <p>Level 1.1 text</p>
12 <p>Level 1.1 text</p>
13 <p>Level 1.1 text</p>
14 <h2>Second level 1.2</h2>
15 <p>Level 1.2 text</p>
16 <p>Level 1.2 text</p>
17 <p>Level 1.2 text</p>
18 <h1>First level 2</h1>
19 <p>Level 2 text</p>
20 <p>Level 2 text</p>
21 <p>Level 2 text</p>
22 <h2>Second level 2.1</h2>
23 <p>Level 2.1 text</p>
24 <p>Level 2.1 text</p>
25 <p>Level 2.1 text</p>
26 <h2>Second level 2.2</h2>
27 <p>Level 2.2 text</p>
28 <p>Level 2.2 text</p>
29 <p>Level 2.2 text</p>
30 </body>
31 </html>

Page 442 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

General approach to writing templates
Chapter 4 - Processing model
Section 3 - Push facilities

As a general rule of thumb when deciding how to write a template rule:
- when matching different nodes of different names: no special approach

- modes, context and priority need not come into play when template rules have no
overlapping match conditions

- when matching the same node for different results: use different modes
- without modes there would be a template conflict (which may not get reported)
- need to distinguish the different results in templates of different collections that

get matched using different modes
- when matching different nodes with the same name: use context and possibly priority

- the use of context distinguishes nodes from each other by their respective ancestors
or by respective predicates

- the use of priority distinguishes templates when the implicit template priority is
not unique

Page 168 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping flat information in XSLT 2.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The objective is to create a hierarchy of the levels implied by h1 and h2:
01 <?xml version="1.0" encoding="UTF-8"?>
02 <result>
03 <p>Outside of any level</p>
04 <group>
05 <title>First level 1</title>
06 <p>Level 1 text</p>
07 <p>Level 1 text</p>
08 <p>Level 1 text</p>
09 <group>
10 <title>Second level 1.1</title>
11 <p>Level 1.1 text</p>
12 <p>Level 1.1 text</p>
13 <p>Level 1.1 text</p>
14 </group>
15 <group>
16 <title>Second level 1.2</title>
17 <p>Level 1.2 text</p>
18 <p>Level 1.2 text</p>
19 <p>Level 1.2 text</p>
20 </group>
21 </group>
22 <group>
23 <title>First level 2</title>
24 <p>Level 2 text</p>
25 <p>Level 2 text</p>
26 <p>Level 2 text</p>
27 <group>
28 <title>Second level 2.1</title>
29 <p>Level 2.1 text</p>
30 <p>Level 2.1 text</p>
31 <p>Level 2.1 text</p>
32 </group>
33 <group>
34 <title>Second level 2.2</title>
35 <p>Level 2.2 text</p>
36 <p>Level 2.2 text</p>
37 <p>Level 2.2 text</p>
38 </group>
39 </group>
40 </result>

Page 443 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Card sample push transforms
Chapter 4 - Processing model
Section 3 - Push facilities

Recall the transformation objective (page 145) using the given data (page 144)

The file cardpush.xsl illustrates the push approach using an traditional stylesheet with a
number of template rules and named modes (collections of template rules):
01 <?xml version="1.0"?><!--cardpush.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet version="1.0"
04 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
05

06 <xsl:template match="/"> <!--process tree twice-->
07 <html><xsl:apply-templates select="card"/>
08 <xsl:apply-templates select="card" mode="postal"/></html>
09 </xsl:template>
10 <!--electronic info-->
11 <xsl:template match="card">
12 <center><u>Electronic Contact Information</u></center>
13 <xsl:apply-templates/></xsl:template>
14

15 <xsl:template match="name">
16 <p>Name: <xsl:apply-templates/></p></xsl:template>
17

18 <xsl:template match="address"/> <!--suppress address-->
19

20 <xsl:template match="email"> <!--generate a mailto:-->
21 <p><xsl:value-of select="@type"/>
22 <xsl:text> Email: </xsl:text>
23 <xsl:apply-templates/></p>
24 </xsl:template>
25 <!--postal info-->
26 <xsl:template match="card" mode="postal">
27 <center><u>Postal Contact Information</u></center>
28 <xsl:apply-templates select="name"/>
29 <xsl:apply-templates select="address" mode="postal"/>
30 </xsl:template>
31

32 <xsl:template match="address" mode="postal">
33 <p>Address: <xsl:apply-templates/></p></xsl:template>
34

35 </xsl:stylesheet>

Of note:
- every <xsl:apply-templates/> must specify that mode to be used for the template

matches
- the template for name is used by the <xsl:apply-templates> instructions on line

13 and line 28
- the document element is visited twice in the first template (lines 7 and 8)

Page 169 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping flat information in XSLT 2.0 (cont.)
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

The supplied groupx2flat2.xsl accomplishes this task
01 <?xml version="1.0"?><!--groupx2flat2.xsl-->
02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
03 xpath-default-namespace="http://www.w3.org/1999/xhtml"
04 version="2.0">
05 <xsl:output method="xml" indent="yes"/>
06

07 <xsl:template match="/"> <!--root rule-->
08 <result>
09 <xsl:for-each-group select="/*/body/*"
10 group-starting-with="h1">
11 <xsl:choose> <!--check first member to see if in an h1-->
12 <xsl:when test="not(self::h1)"> <!--not grouped-->
13 <xsl:apply-templates select="current-group()"/>
14 </xsl:when>
15 <xsl:otherwise> <!--found an h1 group-->
16 <group><title><xsl:apply-templates/></title>
17 <xsl:for-each-group group-starting-with="h2"
18 select="current-group()[position()>1]">
19 <xsl:choose> <!--check to see if in an h2-->
20 <xsl:when test="not(self::h2)"><!--not grouped-->
21 <xsl:apply-templates select="current-group()"/>
22 </xsl:when>
23 <xsl:otherwise> <!--found an h2 group-->
24 <group><title><xsl:apply-templates/></title>
25 <xsl:apply-templates
26 select="current-group()[position()>1]"/>
27 </group>
28 </xsl:otherwise>
29 </xsl:choose>
30 </xsl:for-each-group>
31 </group>
32 </xsl:otherwise>
33 </xsl:choose>
34 </xsl:for-each-group>
35 </result>
36 </xsl:template>
37

38 <xsl:template match="*"> <!--strip namespaces from elements-->
39 <xsl:element name="{local-name(.)}">
40 <xsl:copy-of select="@*"/>
41 <xsl:apply-templates/>
42 </xsl:element>
43 </xsl:template>
44

45 </xsl:stylesheet>

Page 444 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Processing model summary
Chapter 4 - Processing model
Section 4 - Summary and examples

The XSLT processor must produce the same effect as the following:
- build the operation node tree from the stylesheet file

- operation tree contains instruction elements and literal result elements
- build the primary source tree from the source resource

- to act on with directives found in the transform regarding white-space handling
- implicitly execute <xsl:apply-templates select="/"/>

- can alternatively specify the starting mode or named template rule
- instantiate the template for the root node as the start of construction of the result

tree
- note that in an implicitly declared stylesheet, the one result template found in the

stylesheet is assumed to be the template for a template rule for the root node, thus
satisfying the above instruction

- for each <xsl:apply-templates> and <xsl:for-each> instruction:
- select= defines the current context list
- the current context list may be filtered

- by using a predicate in the select= expression
- the current context list may be sorted

- described in Chapter 9 Sorting and grouping (page 401)
- for all of the items in the current context list

- visit each item in turn as the current item
- determine the template to be used to construct "the next part" of the result

node tree
- if using <xsl:apply-templates> :

- match the template rule of highest priority in the mode= collection
- pass all parameterized variable binding values (described in

Chapter 6 Transform and data management (page 209))
- if using <xsl:for-each> :

- use the template of the instruction itself
- add literal result elements and results of operation execution to the result tree

- replace operation in situ with the template result of instruction execution
- read other source files or data sources into node trees as instructed

Note that the processor is not required to be implemented explicitly in any particular way:
- a given implementation can produce the identical result following any algorithm
- the recommendations describe the desired end effect, not the method of implementation

Page 170 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Grouping based on a concatenated sequence
Chapter 9 - Sorting and grouping
Section 2 - Grouping constructs found in information

XSLT grouping distinctions are based on singleton values, not sequences
- a sequence of values must be atomized to a single value
- how does one concatenate the sequence values accommodating absent members?

A sequence delimiter must separate each of the sequence members
- this prevents ambiguity of concatenated fields
- i.e. ('a','x') needs to sort before ('ab','a')

The Unicode � code point is a special "replacement character"
- used to signal an unknown character has been replaced with the replacement character
- should not be found in interchanged documents, so fairly safe to use
- sorts higher than every other Unicode character in the base multilingual plane

The carriage return  code point is rare in XML documents
- most carriage returns are parts of end-of-line sequences that are normalized to

- should not be found in interchanged documents, so fairly safe to use
- sorts lower than every other printable Unicode character

Any concatenation needs to accommodate absent members as either "high values" or "low
values" in the resulting string

- if an absent member is to sort after non-absent members:
- use a high value in the delimiter, e.g. �
- group-by="concat(Heading,'�',

 SubDiv1,'�',
 SubDiv2,'�',SubDiv3)"

- if an absent member is to sort before non-absent members:
- use a low value in the delimiter, e.g. �
- group-by="concat(Heading,'�',

 SubDiv1,'�',
 SubDiv2,'�',SubDiv3)"

Page 445 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Parallelism
Chapter 4 - Processing model
Section 4 - Summary and examples

An XSLT processor implementation has the latitude to process the input in any fashion,
including in a parallel fashion, as long as the result is the same as when processed serially as
described in the Recommendation:

- the side-effect free nature of the XSLT expression language allows an implementation
to simultaneously process multiple nodes of the tree without impacting on expression
evaluation

- by design, the processing of any one template rule on a given node of the source
tree cannot have any impact on the processing of any other template rule or the
same template rule on any other node of the source tree

- the end result of the parallel processes must be assembled as if the source tree nodes
were processed sequentially

For example, consider a book with a number of chapters:
- each chapter node can be processed in parallel on different computers or processors
- the completed result sub-trees for each chapter are assembled in the order of the

corresponding source tree chapter nodes
- the end result is achieved in a time related to the longest processing of one chapter, not

on the sum of the processing of all chapters

Page 171 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Finding the minimum and maximum values
Chapter 9 - Sorting and grouping
Section 3 - Other uses of sorting in XSLT 1.0

Sometimes it is necessary to identify nodes that have a minimum or maximum value from a
set of values

- recall a node-set comparison continues as long as the evaluation is false and stops once
the evaluation is true

- when used in a predicate as in the example below, only evaluates true for those
nodes that are either largest or smallest based on the comparison

- recall that <xsl:sort> reorders the current node list (not the source node tree) and that
position() reflects the sorted order (not the tree order)

- the first item in the list is the first in sorted order
01 <?xml version="1.0"?><!--minmax.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY nl "
">
05]>
06 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
07 version="1.0">
08 <xsl:output method="text"/>
09

10 <xsl:template match="/">
11 <xsl:variable name="itemnodes" select="//item"/>
12 <xsl:text>Minimum nodes:&nl;</xsl:text> <!--get nodes-->
13 <xsl:for-each
14 select="$itemnodes[not($itemnodes/@val < @val)]">
15 <xsl:value-of select="."/><xsl:text>&nl;</xsl:text>
16 </xsl:for-each>
17

18 <xsl:text>Maximum value: </xsl:text> <!--get single value-->
19 <xsl:for-each select="$itemnodes"> <!--sort all in order-->
20 <xsl:sort data-type="number" order="descending"
21 select="@val"/>
22 <xsl:if test="position() = 1"> <!--first in list is max-->
23 <xsl:value-of select="@val"/>
24 </xsl:if>
25 </xsl:for-each>
26 <xsl:text>&nl;</xsl:text>
27 </xsl:template>
28

29 </xsl:stylesheet>

Page 446 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Suggested stylesheet development approach
Chapter 4 - Processing model
Section 4 - Summary and examples

Always remember it is the stylesheet's responsibility (thus the stylesheet writer's responsibility)
to create the result tree in result tree document order:

- what is the document element of the result?
- what is the first content that belongs in the result?
- what comes next, and next, and next, to the end of the result?
- for each piece of content that belongs in the result

- is it found in the source tree?
- if so, then that part of the source tree must be the next part that is accessed

and processed
- if not, then the content must be put directly in the stylesheet for adding to the

result
- ensure all attribute nodes for a result element are added before its content

An iterative approach to stylesheet development:
- begins by developing templates with instructions that handle high level constructs in the

source node
- progresses by developing templates for successively lower level constructs within each

high level construct
- shows small results quickly with simple stylesheets before growing into complex

stylesheets
- will allow you to build on previous successes and recognize pitfalls early

Note that even if some high level constructs will be invisible in the final stylesheet, revealing
their presence in the output at early stages of development helps with diagnosing problems in
the templates.

The following is a helpful technique when working with an XSLT processor that does not
report template conflict errors:

- in the physical order of templates in the stylesheet file, order templates with more
specificity before templates with less specificity

- as new templates are added, neglecting to attach priority will produce no change to the
results as the processor will fall back to the latter templates (thus indicating the newly
added template isn't being processed and requires priority)

Page 172 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Annex A - XML to HTML transformation

- Introduction - Historical web standards for presentation
- Section 1 - The W3C web presentation standards context
- Section 2 - Well-formed HTML
- Section 3 - HTML markup generation techniques

Page 447 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 5 - Transformation environment

- Introduction - The transformation environment
- Section 1 - Transform properties
- Section 2 - In-scope schema specifications
- Section 3 - Serialization
- Section 4 - Communicating with the outside environment

Page 173 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Historical web standards for presentation
Annex A - XML to HTML transformation

Recognizing that the purpose of many XSLT transformations will be to render information
over the World Wide Web, it is important to understand what different user-agent technologies
are currently available to be used:

- user agents do not inherently understand the presentation semantics associated with our
custom XML vocabularies

- can translate instances of our vocabularies into instances of a user agent vocabulary (e.g.
HTML)

- can annotate instances of our vocabularies with formatting properties recognized by a
user agent (e.g. CSS)

Hypertext Markup Language (HTML)
- a language for sharing text and graphics
- a hyperlinking facility for relating information

Cascading Stylesheets (CSS)
- getting away from the built-in user agent rendering semantics
- describes document tree ornamentation with formatting properties

User Agent Screen Painting
- direct control of the user agent canvas

Extensible Hypertext Markup Language (XHTML)
- modularization of HTML
- reformulating HTML as XML
- support of arbitrary XML in HTML

This annex overviews considerations for producing different flavors of HTML to support
different user agents. As well, stylesheet fragments illustrating common requirements to mark
up images and links are described.

Issues of compatibility between different user agent implementations and recommended markup
practices are not reviewed in this material. A discussion of such issues can be found at
http://www.w3.org/TR/xhtml1/#guidelines .

Page 448 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The transformation environment
Chapter 5 - Transformation environment

Different ways are available to communicate to and from a processor
- some aspects of transformation are under transform control
- others cannot be manipulated under transform control

XPath 2 functions for diagnostics
- error()

- signaling a premature end of process
- trace()

- diagnostic reporting of function values

Page 174 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Hypertext Markup Language (HTML)
Annex A - XML to HTML transformation
Section 1 - The W3C web presentation standards context

Initially developed as a markup language for sharing information at the European Center for
Nuclear Research (CERN) using a protocol called the Hypertext Transfer Protocol (HTTP)
based on a vision of Tim Berners-Lee:

- project proposal within CERN - March 1989
- http://www.w3.org/History/1989/proposal.html

- first published version of HTML representing initial practice in 1992
- http://www.w3.org/History/19921103-hypertext/hypertext/WWW

/MarkUp/MarkUp.html
- first W3C version (HTML 2.0) came from HTML Working Group representing current

practice in 1994
- http://www.w3.org/MarkUp/html-spec/ (edited by Dan Connolly)

- widely adopted version (HTML 3.2) representing current practice in 1996
- http://www.w3.org/TR/REC-html32.html (edited by Dave Raggett)

- current W3C version (HTML 4.01) became a final recommendation in April 1998, revised
in August 1999

- http://www.w3.org/TR/REC-html40/
- http://www.w3.org/TR/1999/PR-html40-19990824
- introduces semantic-free constructs for browser canvas painting
- introduces a document model manipulated by scripting for Dynamic HTML

(DHTML)

Page 449 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The transformation environment (cont.)
Chapter 5 - Transformation environment

The XSLT instructions covered in this chapter are as follows.

Wrapping the content of a stylesheet:
- <xsl:stylesheet>

- encapsulate a stylesheet specification
- <xsl:transform>

- encapsulate a stylesheet specification

Schemas and serialization:
- <xsl:namespace-alias>

- specify a result tree namespace translation
- <xsl:output>

- specify the desired serialization of the result tree
- <xsl:character-map>

- specify a translation of characters during serialization
- <xsl:output-character>

- specify a translation of single character during serialization
- <xsl:import-schema>

- gain the awareness of user-defined data types
- <xsl:result-document>

- create more than a single result tree

Communicating with the operator:
- <xsl:message>

- report a stylesheet condition to the operator
- <xsl:param>

- supply a parameterized value from the operator

The functions covered in this chapter are as follows.

Environment functions:
- system-property()

- accessing system-defined property strings
- type-available()

- accessing system-defined property strings

Page 175 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Web Accessibility Initiative (WAI)
Annex A - XML to HTML transformation
Section 1 - The W3C web presentation standards context

- http://www.w3.org/WAI/
- important guidelines for designing accessible web documents
- initially focused on HTML and user agents
- now five primary areas of focus

- technology
- guidelines
- tools
- education and outreach
- research and development

- six sister groups
- http://www.w3.org/WAI/PF/ - protocol and formats
- http://www.w3.org/WAI/ER/ - evaluation and repair
- http://www.w3.org/WAI/GL/ - web content guidelines
- http://www.w3.org/WAI/UA/ - user agent guidelines
- http://www.w3.org/WAI/AU/ - authoring tool guidelines
- http://www.w3.org/WAI/EO/ - education and outreach

- specific XML-related guidelines
- http://www.w3.org/TR/xmlgl

Web Content Accessibility Guidelines (WCAG)
- http://www.w3.org/TR/WAI-WEBCONTENT
- mandated in some European contexts

US Government Section 508 Compliance
- http://www.section508.gov/
- an amendment by Congress in 1998 to the Rehabilitation Act
- Federal agencies must make electronic and information technology accessible to people

with disabilities

Bobby
- http://www.cast.org/bobby
- a free service to test web pages and expose barriers to accessibility

Tidy
- http://www.w3.org/People/Raggett/tidy/
- a free tool to report on and clean up HTML
- option "-asxml " to output XHTML

Page 450 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The stylesheet document/container element
Chapter 5 - Transformation environment
Section 1 - Transform properties

An XSLT stylesheet is an XML document and must be XML-well-formed
- makes it easy for an XSLT stylesheet to be the input and/or the output of other XML

tools, including XSLT
- the document element must declare "http://www.w3.org/1999/XSL/Transform "

(case sensitive)
- the namespace prefix is arbitrary and need not be "xsl "

- historically, XSLT was first specified as chapter 2 of the XSL specification,
thus having the "xsl " prefix gaining popularity amongst users

- XML default namespace not used in XPath element addresses
- all element names in non-null namespaces must use a namespace prefix

- XML default namespace may be declared for XPath element addresses
- by default all un-prefixed element names in XPath are for names in no namespace
- see page 180 for xpath-default-namespace= to override this behavior

A simplified stylesheet has a non-XSLT document element (e.g. page 49)
- the entire document represents the template of the template rule of the root node
- must declare the version of XSLT used by the stylesheet:

- prefix:version=" number-value"

Identical and interchangeable choices for the XSLT document element (e.g. page 50)
- the prefix can be omitted in order to use the default namespace

- default namespace not recommended because access to XSLT attributes in literal
result elements needs a prefix

- <prefix:stylesheet>
- <prefix:transform>
- must declare the version of XSLT used by the stylesheet

- version=" number-value"
- the prefix is not needed because the attribute is in an instruction

- non-XSLT children of document element allowed for user data
- document element child elements must be in a non-XSLT namespace
- can be accessed using the doc() or document() function easily

Page 176 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Cascading Stylesheets (CSS)
Annex A - XML to HTML transformation
Section 1 - The W3C web presentation standards context

HTML was not initially designed to be used as a general purpose browser canvas painting
language

- it is a hypertext markup language describing links to information
- very difficult to flexibly paint the browser screen using the element types available

- the built-in rendering semantics implemented in the browsers dictate the appearance

Vendors implemented incompatible extensions without sticking to recommendations
- the recommendations didn't provide the desired formatting at the time
- users wanted control of the canvas

Cascading style sheets were introduced
- targeted for both page designers and users (page readers)
- override built-in rendering semantics of browsers and achieve more of an artistic effect

on the screen
- influence the presentation of documents without sacrificing device independence or

adding new HTML element types
- decorate the document tree without modifying the structure of the document's hierarchy
- CSS-1 - December 1996

- http://www.w3.org/pub/WWW/TR/REC-CSS1
- adding style to web documents
- a rule describes a facet of style; a collection of rules is a stylesheet
- cascading allows the mixing of and overriding of stylesheets

- CSS-2 - May 1998
- http://www.w3.org/TR/REC-CSS2/
- media-specific stylesheets (e.g. printers and aural devices)
- downloadable fonts
- element positioning
- tables
- support for XML documents

Page 451 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The stylesheet document/container element (cont.)
Chapter 5 - Transformation environment
Section 1 - Transform properties

Can also be used as a container element inside an XML instance
- for a stylesheet embedded in another context

- may use id=" unique-identifier"
- identifies the stylesheet when there are multiple ones from which to choose
- the use of this XML ID attribute is outside the scope of the recommendation
- could be used as a fragment identifier by the stylesheet association processing

instruction or by other techniques to identify a given stylesheet among many

<xsl:stylesheet id="a"...>

 ...

</xsl:stylesheet>

<xsl:stylesheet id="b"...>

 ...

</xsl:stylesheet>

<?xml-stylesheet href="#b"?>

doc.xml

Page 177 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Browser screen painting
Annex A - XML to HTML transformation
Section 1 - The W3C web presentation standards context

HTML 4.0 introduces the concept of Grouping Elements with no stand-alone presentational
idioms (thus are semantic free):

- <DIV>
- a block-level construct (breaks the line flow)

-
- an inline-level construct (doesn't break the line flow)

- when used in conjunction with id= and class= attributes, adds generic method for
adding structure to HTML presentation

- when used in conjunction with CSS style rule specifications, adds generic method for
painting the browser screen with formatting properties

- the "cascade" is the priority of applying properties from different sources (e.g.: markup,
identifier value, class value, element type property set, external stylesheet)

Page 452 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The stylesheet document/container element (cont.)
Chapter 5 - Transformation environment
Section 1 - Transform properties

Non-XSLT namespace declarations are used for literal result elements, vendor extensions,
named constructs, data types, schema types and modes

- literal result elements are examples of portions of the result tree
- e.g. xmlns="http://www.w3.org/1999/xhtml"

- declarations to recognize constructs from the source node tree
- e.g. xmlns:in="urn:oasis:...:xsd:Invoice-2"

- vendors publish namespaces (not prefixes) to identify functionality
- e.g. xmlns:sx="http://icl.com/saxon" (for Saxon 6)
- e.g. xmlns:sx="http://saxon.sf.net/" (for Saxon 9)
- e.g. xmlns:cts="http://marklogic.com/cts" (for MarkLogic)

- named constructs (e.g. variables, templates, keys, etc.), modes and top-level user elements
can be distinguished using namespaces

- e.g. xmlns:xs="http://www.CraneSoftwrights.com/ns/xslstyle"
- data types and user schemas

- e.g. xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Controls available on container element or any literal result element:
- scope of influence is all descendent elements in stylesheet

- these attributes as attributes of instructions do not need to be in the XSLT namespace
- e.g. <xsl:instruction exclude-result-prefixes="sx">

- these attributes as attributes of literal result elements need to be in the XSLT
namespace to be distinguished from the attributes targeted for the result tree

- e.g. <l-r-element xsl:exclude-result-prefixes="sx">

Page 178 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extensible HyperText Markup Language
(XHTML)
Annex A - XML to HTML transformation
Section 1 - The W3C web presentation standards context

- http://www.w3.org/TR/xhtml1
- http://www.w3.org/TR/xhtml-roadmap

- future plans for XHTML
- http://www.w3.org/TR/xhtml-events

- uniformly integrate behaviors of user agents
- a reformulation of HTML using XML 1.0
- reproduces, subsets and extends HTML 4 vocabulary
- XML-conforming and operates in HTML 4 conforming user agents
- XHTML files are acceptable input to XML processing tools

- stylesheets
- applications

IBTWSH
- http://home.ccil.org/~cowan/XML/ibtwsh6.dtd
- Itsy Bitsy Teeny Weeny Simple Hypertext DTD

- written by John Cowan
- minimized document model of XHTML constructs useful for inclusion in other document

models

Page 453 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The stylesheet document/container element (cont.)
Chapter 5 - Transformation environment
Section 1 - Transform properties

Controls available (cont.):
- exclude-result-prefixes=" white-space-separated-prefixes"

- indicate which stylesheet namespace prefixes are not expected in the result, thus
are not to be included in the stylesheet tree on literal result elements

- a list of white-space-separated namespace prefixes specifying prefixes that
are to be explicitly excluded from the stylesheet tree (using #default as the
name to reference the default namespace, which is sometimes unofficially
called the null namespace)

- exclude-result-prefixes="#all" is allowed
- e.g. exclude-result-prefixes="sx in cac cbc ext sig sac sbc"

- user-specified prefixes and associated namespace declarations are often used in
XSLT stylesheets (but not desired in the result) for various purposes such as:

- top-level documentation
- embedded structured data
- named XSLT constructs

- recall that copying an element node from the stylesheet to the result will copy all
attached namespace nodes thus stylesheet namespace declarations can easily end
up in the result tree

- this exclusion declaration tells the XSLT processor to not include the specified
namespace nodes on descendent nodes of the stylesheet tree

- this exclusion declaration has no effect on namespace nodes of the source tree
- extension-element-prefixes=" white-space-separated-prefixes"

- indicate which stylesheet namespace prefixes are instruction prefixes
- a list of white-space-separated namespace prefixes specifying prefixes that

are extension namespaces to be recognized by the XSLT processor (using
#default as the name to reference the default namespace)

- recall that everything that is not an instruction is considered to be a literal result
element

- elements prefixed with the namespace prefix associated with the XSLT URI are
interpreted as instructions

- this declaration tells the XSLT processor what other prefixes are to be interpreted
as instructions because they are extension elements required by the stylesheet

- the processor need not implement the extension elements (detailed in Chapter 6
Transform and data management (page 209))

- not needed if only using extension functions and not extension elements

Page 179 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

What makes well-formed and valid HTML?
Annex A - XML to HTML transformation
Section 2 - Well-formed HTML

Empty elements in HTML, XML, and XHTML:
- e.g.: <hr>

- according to HTML rules an empty element cannot be distinguished from a
non-empty element by just the start tag

- e.g.: <hr/>
- according to XML rules an empty element is distinguished by just the start tag
- some older user agents regard the "/ " as part of the element type and do not

recognize or act on XML well-formed empty HTML elements
- e.g.: <hr />

- according to XHTML guidelines for HTML user agents an empty element's name
is followed by a space

- this is not a normative requirement
- satisfies those older user agents that regard the "/ " as part of the element type
- is well-formed XML but is not typically what is serialized by processors for the

XML method

When the output method is HTML, the XSLT processor must serialize using HTML
conventions:

- <xsl:output method="html"/>
- note also that the HTML output method is assumed when the output method is not

specified and the document element of the result tree is "html" (in upper or lower case)
- known empty element types, attribute minimizations, built-in Latin1 character entity

references, etc.

HTML completeness is important with respect to rigor
- older user agents cannot all accommodate a well-formed or valid HTML file
- <!DOCTYPE

- should have declaration (though some older user agents incorrectly display this on
the canvas)

- note it is the responsibility of the stylesheet writer to use the doctype-public=
attribute of <xsl:output> to ensure this

- some user agents will accept incomplete HTML without a <!DOCTYPE declaration
but will not accept incomplete HTML when there is a <!DOCTYPE declaration

- <head> and <title>
- some older user agents require the content of the <head><style> element to be

an HTML comment <!-- --> to prevent display on the canvas

Page 454 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The stylesheet document/container element (cont.)
Chapter 5 - Transformation environment
Section 1 - Transform properties

 Controls available in XSLT 2.0
- xpath-default-namespace=" uri-string"

- supplies a URI to use for un-prefixed element names used in XPath addresses
- recall the distinction between XML and XPath default namespaces (page 122)
- allowed anywhere in the tree, with influence through descendent constructs

- default-collation=" uri-list"
- supplies a list of URI strings from which an implementation must recognize one

to use for XPath expressions
- specifies the rules for comparing strings

- e.g. a collation where "ß" (German sharp-s) is ordered between "s" and
"t "

- see page 289 for details
- this does not affect XSLT collations used by <xsl:sort>
- to ensure at least one of the strings is recognized, one could end the URI list with

the Unicode Codepoint Collation URI
- http://www.w3.org/2005/xpath-functions/collation/codepoint

- allowed anywhere in the tree, with influence through descendent constructs
- default-validation=" preserve-or-strip"

- governs the default behavior when building the result tree from nodes of a source
tree

- this does not affect nodes that are constructed from scratch using XSLT instructions
- using "preserve " will keep the data type of nodes when copied to the result tree
- using "strip " will change the data type of an element to xs:untyped and that of

an attribute to xs:untypedAtomic
- this attribute does not invoke schema validation

- to invoke schema validation on the entire result tree, wrap the result tree
document element in an <xsl:document> instruction

- allowed anywhere in the tree, with influence through descendent constructs

Page 180 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

What makes well-formed and valid HTML? (cont.)
Annex A - XML to HTML transformation
Section 2 - Well-formed HTML

The XHTML prologue and document element must be appropriately set
- some browsers will not recognize XHTML without all the necessary declarations
- some browsers still fail regardless of the correct declarations

Three possible subsets of XHTML available:
- <!DOCTYPE html

 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

- <!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

- <!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Page 455 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The stylesheet document/container element (cont.)
Chapter 5 - Transformation environment
Section 1 - Transform properties

 Controls available in XSLT 2.0 (cont.)
- input-type-annotations=" preserve-or-strip-or-unspecified"

- governs the use of type annotations attributed to the source tree nodes
- a value of "strip " will remove all data type information from elements and

attributes and turn off the translation of the string value to the typed value
- elements become xs:untyped
- attributes become xs:untypedAtomic
- values of elements and attributes become xs:untypedAtomic strings

- this does not impact other schema-based information such ID/IDREF information
or defaulted values

- default value if not used is "unspecified "
- allows the attribute to be specified when you don't want to change what another

fragment may wish to use
- in one stylesheet no two stylesheet fragments can have contrasting values of "strip "

and "preserve " in their document elements
- only allowed in the document element, not elsewhere in the tree

Page 181 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

What makes well-formed and valid HTML? (cont.)
Annex A - XML to HTML transformation
Section 2 - Well-formed HTML

Must declare the default namespace in the document element:
<html xmlns="http://www.w3.org/1999/xhtml">

- some user agents won't accept other namespace declarations in the document element

Should use HTML media type when declaring the character encoding:
<?xml version="1.0" encoding="utf-8"?>

- XML declaration is to be exclusively used by XML compliant applications
<meta http-equiv="Content-type" content='text/html; charset="utf-8"' />

- used by user agents that ignore the XML declaration may recognize this
- note the content type is not "text/xml " because it is assumed that an XML application

would have already interpreted character the character encoding and the application
must, therefore, be looking for an HTML encoding.

Page 456 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

The stylesheet document/container element (cont.)
Chapter 5 - Transformation environment
Section 1 - Transform properties

Child elements of the document or container element are "top-level" elements:
- if present, the following must occur before all other top-level elements

- xsl:import
- see Imported stylesheets (page 246)

- if present, the following (listed alphabetically) may occur in any order as top-level
elements

- xsl:attribute-set
- see Constructing attribute nodes (page 362)

- xsl:character-map
- see Character maps (page 199)

- xsl:decimal-format
- see Decimal formatting in XSLT (page 295)

- xsl:function
- see User-defined functions (page 240)

- xsl:import-schema
- see Importing schema definitions (page 185)

- xsl:include
- see Included stylesheets (page 245)

- xsl:key
- see XSLT key node referencing (page 320)

- xsl:namespace-alias
- see Namespace protection (page 187)

- xsl:output
- see Serializing the result tree (page 191)

- xsl:preserve-space
- see White-space-only text nodes (page 88)

- xsl:strip-space
- see White-space-only text nodes (page 88)

- xsl:template
- see Repositioning using "push" (page 159)

- the following are not only used as top-level elements, while all others listed above
are only used as top-level elements

- xsl:param
- see Variable and parameter binding (page 225)

- xsl:variable
- see Variable and parameter binding (page 224)

- top-level elements in a non-XSLT namespace are ignored
- useful for stylesheet data for access during the transformation
- useful for richly-structured supplemental documentation (e.g. see page 523)

Page 182 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

What makes well-formed and valid HTML? (cont.)
Annex A - XML to HTML transformation
Section 2 - Well-formed HTML

Not all browsers correctly interpret empty tags

01 <?xml version="1.0" encoding="utf-8"?>
02 <!DOCTYPE html
03 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
04 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
05 <html xmlns="http://www.w3.org/1999/xhtml">
06 <head>
07 <title>test</title>
08 <meta http-equiv=
09 "Content-type" content='text/html; charset="utf-8"' />
10 </head>
11 <body>
12 <div>Div is normal</div>
13 <div style="font-style:italic">Div is italic</div>
14 <div style="text-decoration:underline" />
15 <div>No underline</div>
16 <div style="font-weight:bold"></div>
17 <div>No underline or bold</div>
18 </body>
19 </html>

Of note:
- an empty tag is interpreted in IE as a start tag and the formatting properties incorrectly

continue through to the end of the document
- shown in the example below with the setting of underline

- no problems when start and end tags are used instead of empty tags
- shown in the example below with the setting of bold

 Not a problem with the XHTML serialization
- the specification states that empty elements that are not declared empty cannot be

minimized, thus forcing both the start and end tags

Page 457 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Documenting stylesheets
Chapter 5 - Transformation environment
Section 1 - Transform properties

Because an XSL stylesheet is an XML document:
- XML comments can be used to provide documentation about the stylesheet
- all XML comments and processing instructions found in an XSL stylesheet are ignored

- note that some XML editing tools may leave processing instructions in files for
remembering locations such as the last cursor position

Adding richly marked up documentation to a stylesheet:
- allows the stylesheet to be run through a documenting stylesheet to extract the

documentation in any fashion desired
- is accomplished by including non-XSLT constructs as top-level elements (children of

the stylesheet document element) provided that the default namespace is not used as the
namespace for such constructs, as in the following example:
01 <?xml version="1.0"?><!--hellodoc.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03

04 <xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0" exclude-result-prefixes="mydoc"
06 xmlns:mydoc="http://www.mycompany.com/mydoc">
07

08 <xsl:output method="html"/>
09

10 <mydoc:para>
11 The following construct is the root template.
12 </mydoc:para>
13

14 <xsl:template match="/"> <!--root rule-->
15 <i><u><xsl:value-of select="greeting"/></u></i>
16 <?test a processing instruction here?>
17 </xsl:template>
18

19 </xsl:transform>

Page 183 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Image elements
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

- empty element with two required attributes
- src=

- points to the image storage location
- alt=

- a short text description (important for accessibility; some user agents will display
a pop-up of the text when the pointer hovers over the image)

Optional attributes:
- longdesc=

- complements alt= by pointing to the Universal Resource Identifier (URI) of more
information

- height= and width=
- overriding the image parameters

- usemap= and ismap=
- define client-side and server-side image maps (deprecated)

Note that while the HTML convention for displaying images is to point to the filename directly
in the attribute value, and this can be done in XML, it is a common design practice to point
to image files indirectly through unparsed entity declarations. An example of doing so is
included in Chapter 7 Data type expressions and functions (page 270).

Page 458 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Documenting stylesheets (cont.)
Chapter 5 - Transformation environment
Section 1 - Transform properties

Note the use of exclude-result-prefixes= in the document element above to tell the XSLT
processor to not emit a namespace declaration for the prefix of the documentation namespace:

- if the stylesheet writer knows that namespace will never be needed in the result
- because the XSLT processor doesn't know when creating the document element node of

the result tree whether the namespace will ever be needed in the instance, so by default
the declaration is emitted

See the Crane Softwrights Ltd. web site free resources section for an integrated XSLT stylesheet
documentation environment named XSLStyle™:

- a stylesheet for stylesheets to render embedded DocBook (or any other vocabulary) as
top-level constructs in XSLT

Page 184 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Image elements (cont.)
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

Consider the XML instance imgsamp.xml encoding the logo's filename directly in an attribute
value:
01 <?xml version="1.0"?>
02 <?xml-stylesheet type="text/xsl" href="imgsamp.xsl"?>
03 <imgsamp>
04 <para>Here is an example:</para>
05 <fig file="crane.gif">Crane Logo</fig>
06 <para>End of example</para>
07 </imgsamp>

A possible rendering reveals the caption below the image itself:

Of note:
- the fig element type is not empty, the content is the figure caption
- the caption is being used both for the image alternate text and for the canvas

Page 459 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Importing schema definitions
Chapter 5 - Transformation environment
Section 2 - In-scope schema specifications

User-defined schema types are specified by external or internal schema expressions
- there are no pre-defined schema types
- an error is triggered if a non-schema-aware processor attempts to perform validation

 Declare the schemas at the top level of the stylesheet
- <xsl:import-schema>
- namespace=

- specifies the namespace of the schema expression
- this must match any present declared namespace within the schema

- schema-location=
- makes reference to an external schema expression

- alternative W3C Schema expression content defines a synthetic schema:
- exclusive with schema-location=

An example adapted from the XSLT 2.0 specification
01 <xsl:import-schema>
02 <xs:schema targetNamespace="http://localhost/ns/yes-no"
03 xmlns:xs="http://www.w3.org/2001/XMLSchema">
04 <xs:simpleType name="yes-no">
05 <xs:restriction base="xs:string">
06 <xs:enumeration value="yes"/>
07 <xs:enumeration value="no"/>
08 </xs:restriction>
09 </xs:simpleType>
10 </xs:schema>
11 </xsl:import-schema>
12

13 <xsl:param name="condition" as="xs:string" select="'yes'"/>
14

15 <xsl:variable name="condition-value" as="my:yes-no"
16 select="my:yes-no($condition)"
17 xmlns:my="http://localhost/ns/yes-no"/>
18

19 ...
20 <xsl:value-of select="$condition-value"/>

- the constrained data type using as= indicates the type
- the example shows how to constrain a passed parameter using an internally-defined

schema:
- the data type of the passed parameter is the generic simple string xs:string
- the variable casts the parameter value and must be either "yes " or "no"
- at run time the processor can confirm the default or overriding value is correct

Page 185 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Image elements (cont.)
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

One possible XSLT stylesheet, imgsamp.xsl , would be as follows:
01 <?xml version="1.0"?><!--imgsamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY dark-green "#004400">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0"
06 xmlns="http://www.w3.org/TR/REC-html40">
07

08 <xsl:output method="html"
09 doctype-public="-//W3C//DTD HTML 4.0 Transitional//EN"/>
10

11 <xsl:template match="/"> <!-- root rule -->
12 <html>
13 <head><title>Image Sample</title></head>
14 <body><xsl:apply-templates/></body>
15 </html>
16 </xsl:template>
17

18 <xsl:template match="fig">
19 <div style="font-size:10pt;text-align:center">
20
21 <div>
22 <xsl:apply-templates/>
23 </div>
24 </div>
25 </xsl:template>
26

27 <xsl:template match="para">
28 <div style="font-size:15pt;color=&dark-green;">
29 <xsl:apply-templates/>
30 </div>
31 </xsl:template>
32

33 </xsl:stylesheet>

Page 460 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Validating result tree nodes
Chapter 5 - Transformation environment
Section 2 - In-scope schema specifications

Engaging validation requires:
- using a schema-aware processor
- engaging schema awareness
- specifying in-scope schema definitions in the transformation environment

- see Importing schema definitions (page 185) for details

Available for document, element and attribute constructors
- user-defined global types from imported schemas

- e.g. address:zip-code
- built-in awareness of XSD and XPath 2 types

- e.g. xs:integer

Two mutually-exclusive attributes for XSLT construction instructions:
- validation= strength of the validation of the schema-declared type

- a value of "strict " will perform strict schema validity assessment on element and
attribute nodes

- a value of "lax " will perform strict schema validity assessment only on those
element and attribute nodes for which there is a declaration

- a value of "preserve " will retain all data type information from elements and
attributes when copied from the source tree to the result tree

- a value of "strip " will remove all data type information from elements and
attributes and turn off the translation of the string value to the typed value

- elements become xs:untyped
- attributes become xs:untypedAtomic
- values of elements and attributes become xs:untypedAtomic strings

- type= strict validation of the specified named type
- specifies the explicit type regardless of any declared type for the construct

Page 186 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

HTML meta-data
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

Consider the XML instance metasamp.xml encoding page title information in the instance:
01 <?xml version="1.0"?>
02 <?xml-stylesheet type="text/xsl" href="metasamp.xsl"?>
03 <metasamp>
04 <banner>The Sample Title</banner>
05 <para>Here is a paragraph</para>
06 <para>End of example</para>
07 </metasamp>

The following rendering reuses the meta data for the HTML file in two places, in each of the
title bar of the window and on the canvas:

Page 461 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespace protection
Chapter 5 - Transformation environment
Section 3 - Serialization

A special concern regarding the use of namespaces:
- the "transformation by example" paradigm utilizes literal result elements

- represent result tree element nodes with associated attribute nodes
- written as an element with associated attributes in a template in the stylesheet

- can use the default namespace
- can use a namespace prefix and associated namespace URI

- some namespaces can be sensitive in the document processing environment
- automatically-triggered platform services
- for example: digital signature processing

- if the result tree requires a sensitive namespace, the stylesheet can't use the namespace
in a literal result element

- to produce an XSLT script as the output of translation
- the XSLT processor would incorrectly interpret the result vocabulary as input

- to use a platform service for the output of translation
- the stylesheet use of the URI would incorrectly trigger the service

- <xsl:namespace-alias stylesheet-prefix=" prefix"
 result-prefix=" prefix"/>

- top-level element only
- instruction to translate a namespace prefix in the stylesheet into another namespace

prefix when used in the result
- stylesheet-prefix= specifies the prefix used in the stylesheet tree that is being

added to the result tree by the stylesheet
- no influence or recognition in the source tree

- result-prefix= specifies the prefix of the stylesheet tree whose URI is to be
used for the result tree prefix

- the prefix must be declared in the stylesheet even if no element in the stylesheet
uses the prefix

- the value "#default " is allowed in XSLT 2.0 to specify the default namespace
- the stylesheet prefix is used in the result tree
- the result prefix is used in the result tree

Page 187 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

HTML meta-data (cont.)
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

The XSL stylesheet metasamp.xsl renders the example:
01 <?xml version="1.0"?><!--metasamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY dark-green "#004400">
05]>
06 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
07 version="1.0">
08

09 <xsl:template match="/"> <!-- root rule -->
10 <html>
11 <head>
12 <title><xsl:value-of select="//banner"/></title>
13 </head>
14 <body>
15 <xsl:apply-templates/>
16 </body>
17 </html>
18 </xsl:template>
19

20 <xsl:template match="banner">
21 <div style="font-size:15pt;color=red;text-align:center">
22 <xsl:apply-templates/>
23 </div>
24 </xsl:template>
25

26 <xsl:template match="para">
27 <div style="font-size:15pt;color=&dark-green;">
28 <xsl:apply-templates/>
29 </div>
30 </xsl:template>
31

32 </xsl:stylesheet>

Page 462 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespace protection (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

Classic use case: stylesheets writing stylesheets
- the output of one transformation is the stylesheet for another transformation

XML

Transform

Process

XSLT

production

data

stylesheet

synthesis

Transform

Process

XML
Result

Result
XML

stylesheet

data

XSLT

Note that this is how the reference implementation of ISO/IEC 19757-3 Schematron is
implemented

- http://www.schematron.com
- the Schematron script is the "stylesheet data"
- the Schematron stylesheet is the "synthesis stylesheet"
- the resulting XML is the set of validation constraints expressed as an XSLT stylesheet
- that synthesized stylesheet is run on production data to produce a validation report

Page 188 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Anchor elements
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

Consider the need to de-reference use of the XML concepts of ID and IDREF pointers (XML
1.0 recommendation production [56]) as in asamp.xml :
01 <?xml version="1.0"?>
02 <?xml-stylesheet type="text/xsl" href="asamp.xsl"?>
03 <!DOCTYPE asamp [
04 <!ELEMENT asamp (section+)>
05 <!ELEMENT section (title, para+)>
06 <!ATTLIST section id ID #REQUIRED>
07 <!ELEMENT title (#PCDATA)>
08 <!ELEMENT para (#PCDATA | sectref)*>
09 <!ELEMENT sectref EMPTY>
10 <!ATTLIST sectref idref IDREF #REQUIRED>
11]>
12 <asamp>
13 <section id="s1">
14 <title>Section One</title>
15 <para>First paragraph of section one.</para>
16 <para>Second paragraph of section one.</para>
17 </section>
18 <section id="s2">
19 <title>Section Two</title>
20 <para>First paragraph of section two.</para>
21 <para>Second paragraph of section two
22 with reference to <sectref idref="s1"/> embedded.</para>
23 </section>
24 </asamp>

Page 463 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespace protection (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

Note in the example below how the XSLT namespace URI cannot be used for the declaration
for the xslo prefix, otherwise the xslo prefixed elements would be interpreted as XSLT
instructions:
01 <?xml version="1.0"?><!--xsl.xsl-->
02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
03 xmlns:xslo="any-URI-but-XSLT-URI" version="2.0">
04

05 <xsl:output indent="yes"/>
06

07 <xsl:namespace-alias stylesheet-prefix="xslo"
08 result-prefix="xsl"/>
09

10 <xsl:template match="/"> <!--root rule-->
11 <xslo:stylesheet version="2.0">
12 <xslo:template match="/">
13 <html>
14 <p>
15 Stylesheet <xsl:value-of select="."/>:
16 <xslo:value-of select="."/>
17 </p>
18 </html>
19 </xslo:template>
20 </xslo:stylesheet>
21 </xsl:template>
22

23 </xsl:stylesheet>

Page 189 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Anchor elements (cont.)
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

With the desired result replacing the empty section reference elements with a hyperlink pointing
to the section itself and the displayed content of the hyperlink being the title of the section to
which it points:
01 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
02 <html>
03 <head>
04 <title>Anchor Example</title>
05 </head>
06 <body>
07

08
09 <p style="font-size:15pt;color=red;text-align:center">Section One</p>
10
11 <p style="font-size:15pt;color=#004400">First paragraph of section
one.</p>
12 <p style="font-size:15pt;color=#004400">Second paragraph of section
one.</p>
13

14
15 <p style="font-size:15pt;color=red;text-align:center">Section Two</p>
16
17 <p style="font-size:15pt;color=#004400">First paragraph of section
two.</p>
18 <p style="font-size:15pt;color=#004400">Second paragraph of section two
19 with reference to Section One embedded.</p>
20

21 </body>
22 </html>

Page 464 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Namespace protection (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

When this particular stylesheet is run with the following data file as source:
01 <stylesheet-data>input file number one</stylesheet-data>

the XSLT processor will build the result tree with the "xsl " prefix and associated URI for
every element that uses the "xslo: " prefix in the stylesheet as indicated in the
<xsl:namespace-alias> instruction, thus using the XSLT namespace and URI when the
result tree is serialized as XML markup:
01 <?xml version="1.0" encoding="UTF-8"?>
02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
03 version="2.0">
04 <xsl:template match="/">
05 <html>
06 <p>
07 Stylesheet input file number one:
08 <xsl:value-of select="."/>
09 </p>
10 </html>
11 </xsl:template>
12 </xsl:stylesheet>

When the generated stylesheet is run with the following data as source:
01 <production-data>Test file number two</production-data>

when output will be:
01 <html>
02 <p>
03 Stylesheet input file number one:
04 Test file number two
05 </p>
06 </html>

Page 190 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Anchor elements (cont.)
Annex A - XML to HTML transformation
Section 3 - HTML markup generation techniques

The XSLT stylesheet asamp.xsl effects this transformation as follows, utilizing the XSLT
id() function described in User XML identifier referencing (page 313):
01 <?xml version="1.0"?><!--asamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY dark-green "#004400">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06

07 <xsl:output method="html"
08 doctype-public="-//W3C//DTD HTML 4.0 Transitional//EN"/>
09

10 <xsl:template match="/"> <!-- root rule -->
11 <html>
12 <head><title>Anchor Example</title></head>
13 <body><xsl:apply-templates/></body></html></xsl:template>
14

15 <xsl:template match="section/title">
16
17 <p style="font-size:15pt;color=red;text-align:center">
18 <xsl:apply-templates/>
19 </p></xsl:template>
20

21 <xsl:template match="para">
22 <p style="font-size:15pt;color=#004400">
23 <xsl:apply-templates/></p></xsl:template>
24

25 <xsl:template match="sectref">
26
27 <xsl:value-of select="id(@idref)/title"/></xsl:template>
28

29 </xsl:stylesheet>

Page 465 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Serializing the result tree
Chapter 5 - Transformation environment
Section 3 - Serialization

Serialization is creating a system resource out of an abstract result node tree
- recall diagrams starting on page 35

- each one shows the result tree as a dotted triangle inside of the process being
serialized to some external resource outside of the process

- serialization is optionally specified by the transform writer
- the nodes in the result tree can be the nodes of a subsequent process's source tree

- serialization is optionally supported by the transform engine
- a processor need not support any serialization at all and would still be considered

conformant

<xsl:output> top-level element requests serialization
- request to serialize the result tree as a sequence of characters

- the XSLT processor may choose to respect the request, but is not obliged
- all attributes are optional
- name="declaration-qname"

- gives the set of declarations a name so that it can be referenced
- useful when producing multiple result trees (page 38)

Page 191 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Annex B - XSL formatting semantics introduction

- Introduction - Formatting objectives
- Section 1 - Formatting model
- Section 2 - Formatting objects
- Section 3 - Example stylesheet with formatting constructs

Outcomes:

- awareness of the formatting objectives of the XSL development committee
- awareness of the formatting model

Page 466 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Serializing the result tree (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

Serialization properties
- all are optionally specified and all are optionally supported
- presented as attribute specifications but this may not be how a vendor requires it

- e.g. Saxon uses name=value, not name=" value"

- method=" method-indication"
- method="html"

- HTML vocabulary and SGML markup conventions
- empty elements
- attribute minimization
- built-in character entity referencing (as defined by HTML)
- cannot selectively turn on only a subset of the HTML conventions

- all conventions are used according to common practice
- considered the default when the document element is {}html in any letter

case
- the name of the document element node is HTML (case insensitive)
- the null namespace URI is used for the name (i.e.: no namespace prefix)

- method="xhtml"
- XML serialization with recommended XHTML lexical conventions

- guidelines for empty tags for elements defined to be empty
- no markup minimization for empty elements not defined to be empty

- considered the default when the document element is
{http://www.w3.org/1999/xhtml}html in lower letter case

- method="xml"
- arbitrary vocabulary and XML markup conventions

- empty elements
- built-in character entity referencing

- the default when the default isn't HTML or XHTML
- method="text"

- no vocabulary and no lexical or syntactic conventions
- serializes only the text nodes of every element in the result tree
- all characters in clear text (no entities of any kind)

- never the default
- method=" prefix: processor-recognized-method-name"

- xmlns: prefix=" processor-recognized-URI-reference"
- lexical and syntactic conventions recognized by the processor

- arbitrary serialization (out of the scope of W3C) such as a binary
serialization for a colloquial vocabulary

- never the default

Page 192 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting objectives
Annex B - XSL formatting semantics introduction

The Extensible Stylesheet Language (XSL)

A catalogue of formatting objects and flow objects (each with properties controlling behavior)
for rendering information to multiple media.

- addresses basic word-processing-level pagination
- semantic model for formatting

- expressed in terms of which XSL concepts can be described
- described as a vocabulary that can be serialized as XML markup

Sophisticated pagination and support for layout-driven documents
- DSSSL

- Document Style Semantics and Specification Language ISO-10179
- W3C Common Formatting Model

- effort initially based on CSS
- vocabulary accommodates both heritages

- some constructs can be specified different ways with different names
- writing-direction-independent (absolute) and writing-direction-dependent (writing

mode relative) properties

Well-defined constructs
- express formatting intent

- according to the XSL formatting model
- available to the stylesheet writer

- for specification of a layout using the XSL formatting vocabulary
- managed and interpreted by the formatter

- that process responsible for rendering
- in response to a description of the layout

Page 467 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Serializing the result tree (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

Serialization properties (cont.)
- method serializations are standardized in a separate document

- shared with XQuery
- http://www.w3.org/TR/xslt-xquery-serialization/

- attributes related to the method:
- version=" numeric-version"

- to specify the version of the output method
- omit-xml-declaration="yes" and omit-xml-declaration="no"

- to specify the absence or presence of the XML declaration (if the result tree
represents a document entity) or the text declaration (if the result tree
represents an external general parsed entity)

- standalone="yes" and standalone="no"
- to specify the presence or absence of a standalone document declaration

- doctype-system=" system-identifier"
- to specify the system identifier to use in the DOCTYPE declaration

- doctype-public=" public-identifier"
- to specify the public identifier to use in the DOCTYPE declaration
- requires doctype-system= to also be specified if the output method is XML

Page 193 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting objectives (cont.)
Annex B - XSL formatting semantics introduction

Effecting the formatting of XML with XSL formatting semantics
- transformation stylesheet

- it is the stylesheet writer's responsibility to write an XSLT transformation of the
XML source file into a result node tree composed entirely of formatting and flow
objects using the XSL vocabulary

- same architecture as when producing HTML from XML
- an XSL-FO engine interprets an XSL-FO instance just as a browser interprets

HTML
- semantics interpretation

- an XSL processor implementing XSL formatting semantics recognizes the
vocabulary and renders the result

- unlike CSS
- the user's vocabulary is not supplemented with formatting properties

Intermediate result of rendering
- the XSL processor may, but need not, emit the result node tree as XML markup

- formatting and flow objects are XML elements
- properties are attribute/value pairs specified in the XML elements

- very useful for debugging stylesheets
- recall the XSL-FO engine incorporating XSLT (page 39)

This chapter briefly introduces concepts and basic constructs used in the XSL-FO 1.0
Recommendation, without going into the details of the vocabulary or markup required to
support these concepts. The topic of formatting objects and their semantics and markup warrants
an entire tutorial on its own and is thus separate from this tutorial.

Page 468 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Serializing the result tree (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

Serialization properties (cont.)
- attributes related to the method (cont.):

- include-content-type=" yes-or-no-default-yes"
- only applicable to XHTML and HTML serialization
- a value of "yes " will inject or replace an appropriate <meta/> element as the

first child of the <head> element to declare the content type of the page
- recall the illustrated result output on page 49

- escape-uri-attributes=" yes-or-no-default-yes"
- only applicable to XHTML and HTML serialization
- applies normalization, percent encoding and character escaping to URI

attribute values
- normalization-form=" token"

- only applies to the XML serialization method
- used to specify the character selection for the Unicode repertoire
- see normalize-unicode() page 288 for details
- the value "none " specifies no normalization will be applied
- the prefix "NF" represents "Normalization Form"
- the values "NFC" and "fully-normalized " are standardized in

http://www.w3.org/TR/charmod-norm/
- requests canonical decomposition followed by canonical composition

- the values "NFD", "NFKC" and "NFKD" are standardized in
http://www.unicode.org/unicode/reports/tr15/

- NFD requests canonical decomposition
- NFKD requests compatibility decomposition
- NFKC requests compatibility decomposition followed by canonical

composition
- an implementation-defined normalization can be specified by using any other

token
- undeclare-prefixes=" yes-or-no-default-no"

- only applicable to XML version 1.1 serialization
- a value of "yes " will inject namespace undeclarations on elements not

containing the same namespace nodes as its parent

Page 194 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Summary of formatting model components
Annex B - XSL formatting semantics introduction
Section 1 - Formatting model

XSL incorporates most of the formatting objects and properties of CSS:
- 90% of the XSL properties are properties already defined in CSS

- some old CSS properties now represent a shorthand definition of a collection of
properties offering finer control

- new properties introduced for a model for pagination and layout
- will be extended to page structures beyond the simple page models of the first

version of the recommendation

Writing-direction-dependent properties
- some XSL constructs can be specified with adjectives that are writing mode relative

- "before ", "after ", "start " and "end " vs. "top ", "bottom ", "left " and "right "
- stylesheets need not change to accommodate different writing directions

- resulting rendering relative to writing direction

Page 469 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Serializing the result tree (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

Serialization properties (cont.)
- attributes related to the serialized markup syntax:

- indent=" yes-or-no-default-based-on-method"
- to ask the processor (at its discretion) to indent the result "nicely" with

additional white space when using the xml method
- implications for the downstream parsing processes if the white space is

considered significant
- should only use "yes " during development/diagnostics and should use

"no" in production because of the arbitrary amount of white space being
added to the result

- cdata-section-elements=" list-of-element-type-qnames"
- white-space-separated list of element types possibly used in the result
- specifies those result tree elements whose text content is serialized within a

CDATA section

Page 195 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Summary of formatting model components (cont.)
Annex B - XSL formatting semantics introduction
Section 1 - Formatting model

The formatting model basis:
- rectangular areas of content

- the content is flowed into the layout description
- future extensions to the model may include non-rectangular areas

- spaces around and between content areas
- the spaces make adjustments to the layout and do not have content

Area behavior:
- specified by the stylesheet writer

- the stylesheet writer specifies areas and their traits using formatting objects and
their properties

- managed by the formatter tasked with rendering the areas to the target device
- areas may be filled explicitly by the stylesheet writer

- traits explicitly specified in the stylesheet properties
- areas may be filled implicitly by the formatter:

- some traits implicitly derived
- for example, if the stylesheet writer specifies a block that is filled with text,

then the resulting line areas that comprise the block are synthesized by the
formatter to accommodate the block

- the formatter manages inheritance when creating areas and must derive certain
properties when synthesizing areas not specified explicitly by the stylesheet
writer

- default values are included in the inheritance hierarchy

Important note:
- this design does not ensure page fidelity between two conforming implementations
- the declarative nature gives implementations leeway in certain aspects of rendering not

specified by the stylesheet writer

Page 470 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Serializing the result tree (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

Serialization properties (cont.)
- attributes related to the encoding:

- encoding=" encoding"
- to request (if supported by the processor) the character set encoding output

of the emitted result tree
- processor can arbitrarily use encoding="UTF-8" or

encoding="UTF-16" for XML or XHTML
- value should match the encoding= pseudo-attribute described by the XML

Recommendation for the XML declaration
- typical values supported by some processors:

- e.g. encoding="US-ASCII"
- a 7-bit character set with no accented characters or special symbols

- e.g. encoding="ISO-8859-1" (Latin 1)
- an 8-bit character set historically used for Western European

encoding
- note that some processors support encoding="Latin1"

- e.g. encoding="ISO-8859-15" (Latin 9)
- an 8-bit character set that replaces the currency symbol ("¤") with

the Euro symbol ("€")
- byte-order-mark=" yes-or-no"

- to add a Unicode byte order mark at the start of the file
- for encoding="UTF-16" the default is "yes "
- for encoding="UTF-8" the default is implementation defined
- for all other encodings the default is "no"

- media-type=" media-type"
- to specify the MIME content type (without specifying the charset parameter)

- attribute related to the character-level serialization
- use-character-maps=" list-of-named-character-maps"

- engage character to string replacement during serialization
- white-space-separated list of <xsl:character-map> instructions describing

the translation of characters
- see Character maps (page 199) for details

Page 196 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Summary of formatting model components (cont.)
Annex B - XSL formatting semantics introduction
Section 1 - Formatting model

There is a hierarchy of rectangular areas managed by the stylesheet writer and the formatter:
- a container reference area:

- contains block areas
- may be placed at a specific position within a containing area
- may be attached to the inside of any edge of a containing area

- a block area:
- is filled (perpendicular to the writing direction) with line areas (that are in the

writing direction) or nested block areas
- stacks nested block areas within the containing area without the ability to span

across a container boundary
- a line area:

- generated within a block by the formatter
- is filled with inline areas

- an inline area:
- may contain other inline areas
- may have complex content (e.g.: an inline mathematical expression)
- at its lowest level contains a single glyph area or graphic area to be rendered

Each rectangular area has:
- a border surrounding the content of the area
- padding defining the open space between the inside of the border and the content

Page 471 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Illustration of output methods
Chapter 5 - Transformation environment
Section 3 - Serialization

Consider a simple XML file nodein.xml created using the 8-bit ISO character set for Western
European languages Latin 1, a.k.a. ISO-8859-1 (note the copyright symbol seen here is encoded
in the file using the hexadecimal character 0xA9):
01 <?xml version="1.0" encoding="iso-8859-1"?>
02 <p>Test with © and < and & in it</p>

The following illustrates the node tree that is created by the XSL processor:

Root

 name=N/A

value=value of all descendents

Element

name="p"

value=value of all descendents

Text

 name=N/A

value="Test with © and < and & in it"

Note how the markup used to represent the sensitive XML characters is lost. The node tree
shown would also be created identically by the following markup:
01 <?xml version="1.0" encoding="iso-8859-1"?>
02 <p><![CDATA[Test with © and < and & in it]]></p>

All character values in text nodes are maintained as UCS-2 (Universal Character Set - Two
Octet) characters. The UCS character set is a 32-bit (4 octet) repertoire with a 16-bit (2 octet)
repertoire subset (equivalent to Unicode) that can be serialized as either 16-bit (2 octet)
characters or, using an encoding called UTF-8, as a sequence of 8-bit (1 octet) characters.

Page 197 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Summary of formatting model components (cont.)
Annex B - XSL formatting semantics introduction
Section 1 - Formatting model

Space is managed by the stylesheet writer and the formatter:
- between blocks:

- can be assigned preceding and following block areas to control placement
- coalesces with adjacent display spaces according to resolution rules

- between inline areas:
- is assigned preceding and following inline areas
- coalesces with adjacent inline spaces according to resolution rules

- resolution rules include concepts of:
- conditionality - whether or not a space is to exist
- precedence - which aspect of space definition overrides others

Page 472 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Illustration of output methods (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

The use of method="xml" emits the same nodes using the UCS characters of the text nodes
while using the built-in XML entities where necessary:
01 <p>Test with © and < and & in it</p>

- note the two-character UTF-8 hexadecimal representation of the copyright symbol is
0xC2 0xA9 which would both be revealed in a non-UTF-8 presentation environment
such as an ISO-8859-1 Latin-1 environment as follows:
<p>Test with Â© and < and & in it</p>

The use of method="html" recognizes known built-in HTML entities and uses the entity
references where necessary:
01 <p>Test with © and < and & in it</p>

The use of method="text" ignores all element start and end tags and puts out the UCS
characters of all the text nodes while not using any built-in entities:
01 Test with © and < and & in it

- note again in a non-UTF-8 environment this text file would appear as two characters as
in the ISO-8859-1 Latin-1 environment:
Test with Â© and < and & in it

Page 198 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Summary of formatting model components (cont.)
Annex B - XSL formatting semantics introduction
Section 1 - Formatting model

A simple illustration of rectangular areas:

Page

Region

List Block

List Item

Block

Block

Line

Inline

List Item Label

Block

List Item Body

Block

Laying out the areas requires knowledge of formatting objects, e.g.:
- blocks are as wide as their parents, thus can only stack above and below each other,

never beside each other
- to get two blocks beside each other, one must introduce an object with pairs of adjacent

areas that allow blocks as children, such as the list item object found within list block
objects

Page 473 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Character maps
Chapter 5 - Transformation environment
Section 3 - Serialization

 One can declare a set of character translations when the result is serialized
- serialization happens after the result tree is created (see page 35)

Individual Unicode characters are mapped to serialized strings
- each mapping has a mandatory character and a mandatory replacement string:

01 <xsl:output-character character=" single-Unicode-character"
02 string=" arbitrary-replacement-string"/>

- describes a serialization mapping of a single Unicode character in character= to an
arbitrary string of markup characters in string=

- any Unicode character can be used as the trigger for a string replacement
- Unicode reserves to as non-characters

- not expected to be used in files by users
- effectively application-internal private-use code points

- Unicode reserves  to  for private use and does not define any
interoperable semantics for these characters

- but users may be using these private characters for their own use

<xsl:character-map> top-level element
- a character map can stand alone

01 <xsl:character-map name=" character-map-qname">
02 optional <xsl:output-character> elements
03 </xsl:character-map>

- a character map can be constructed from other character maps
01 <xsl:character-map name=" character-map-qname"
02 use-character-maps=" white-space-separated-list-of-names">
03 optional <xsl:output-character> elements
04 </xsl:character-map>

- the last encountered <xsl:output-character> declaration for a particular character
is the one used

Page 199 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Formatting object vocabulary
Annex B - XSL formatting semantics introduction
Section 2 - Formatting objects

Formatting and flow object vocabulary:
- identified by namespace URI and version

- http://www.w3.org/1999/XSL/Format
- 81 different objects defined

- pagination and layout
- block
- inline
- table
- list
- link and multi
- out-of-line
- other

- attributes specified in stylesheet control properties of objects
- not all properties apply to all objects
- 272 different properties defined

- common accessibility properties
- common absolute position properties
- common aural properties
- common border, padding and background properties
- common font properties
- common hyphenation properties
- common keeps and breaks properties
- common margin properties - block
- common margin properties - inline
- pagination and layout properties
- table properties
- character properties
- rule and leader properties
- page-related properties
- float-related properties
- number to string conversion properties
- link properties
- miscellaneous properties

Page 474 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Character maps (cont.)
Chapter 5 - Transformation environment
Section 3 - Serialization

An example of needing to produce ASP results in a DOS-compatible format:
- consider the need to produce "<%" in the result tree when this syntax is not valid HTML

or XML use of the "<" character:
- <% Method-Call() %>

- character maps can be set up to convert XML new-lines and to use Unicode reserved
characters:

- 01 <xsl:character-map name="dos-format">
02 <xsl:output-character character="
"
03 string="
"/>
04 </xsl:character-map>
05 <xsl:character-map name="asp-stuff"
06 use-character-maps="dos-format">
07 <xsl:output-character character="" string="<%"/>

08 <xsl:output-character character="" string="%>"/>
09 </xsl:character-map>

- the text result then uses the reserved characters to represent the string sequence
- Method-Call()

- it is not necessary to escape "%>" but one might want to do so for symmetry
- the processor must be directed to utilize the character map

- <xsl:output use-character-maps="asp-stuff"/>

An interesting use case:
- translate accented capital letters to unaccented capital letters

- France accepts accented capitals without accents, while Québec does not
- 01 <xsl:character-map name="Québec-to-France">

02 <xsl:output-character character="À" string="A"/>
03 <xsl:output-character character="É" string="E"/>
04 ...many others...
05 </xsl:character-map>

Page 200 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example stylesheet with formatting constructs
Annex B - XSL formatting semantics introduction
Section 3 - Example stylesheet with formatting constructs

The stylesheet fmtsamp.xsl illustrates an example of a stylesheet using the XSL formatting
constructs for the result tree:
01 <?xml version="1.0"?><!--fmtsamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 xmlns="http://www.w3.org/1999/XSL/Format"
05 version="1.0">
06 <xsl:output method="xml"/>
07

08 <xsl:param name="font-size" select="'20pt'"/>
09

10 <xsl:template match="/"> <!--put all on in one page sequence-->
11 <root><layout-master-set>
12 <simple-page-master master-name="crane"
13 margin-top=".5in" margin-bottom=".5in"
14 margin-left=".75in" margin-right=".75in"
15 page-width="8.5in" page-height="11in">
16 <region-body region-name="crane-content"/>
17 </simple-page-master></layout-master-set>
18 <page-sequence master-reference="crane">
19 <flow flow-name="crane-content" font-size="{$font-size}">
20 <xsl:apply-templates/>
21 </flow></page-sequence></root></xsl:template>
22

23 <xsl:template match="para"> <!--a standard paragraph-->
24 <block space-before.optimum="{$font-size}">
25 <xsl:apply-templates/></block></xsl:template>
26

27 <xsl:template match="emph"> <!--emphasize some information-->
28 <inline font-weight="bold">
29 <xsl:apply-templates/></inline></xsl:template>
30

31 </xsl:stylesheet>

Page 475 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Multiple result trees
Chapter 5 - Transformation environment
Section 3 - Serialization

 One can create more than a single result tree
- each tree can be serialized into a separate sequence of markup characters
- recall page 38

<xsl:result-document> instruction
- the children and descendents are serialized into a stream of markup or text
- href=" AVT" specifies the URI of where to place the resulting serialization

- this may be a virtual location and not a physical resource of any kind
- validation= strength of the validation of the declared type

- a value of "strict " will perform strict schema validity assessment on element and
attribute nodes

- a value of "lax " will perform strict schema validity assessment only on those
element and attribute nodes for which there is a declaration

- a value of "preserve " will retain all data type information from elements and
attributes when copied from the source tree to the result tree

- a value of "strip " will remove all data type information from elements and
attributes and turn off the translation of the string value to the typed value

- elements become xs:untyped
- attributes become xs:untypedAtomic
- values of elements and attributes become xs:untypedAtomic strings

- type= strict validation of the named type
- specifies the type of the document element of the result tree

- format=" AVT" optionally specifies the named <xsl:output> element to use as a basis
for serialization options

- omitting this attribute specifies the unnamed <xsl:output>
- output-version=" AVT" optionally overrides version= in named <xsl:output>

instruction
- this is necessary because for non-empty instructions version= refers to the version

of the transformation process applicable to the descendent nodes
- all other <xsl:output> attributes may be specified

- see Serializing the result tree (page 191) for details
- note that the use-character-sets= is not an attribute value template
- all other <xsl:output> attributes are attribute value templates in

<xsl:result-document> even though they are not attribute value templates in
<xsl:output>

Page 201 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example stylesheet with formatting constructs
(cont.)
Annex B - XSL formatting semantics introduction
Section 3 - Example stylesheet with formatting constructs

When processing the source file fmtsamp.xml :
01 <?xml version="1.0"?>
02 <doc>
03 <para>First paragraph.</para>
04 <para>Second para <emph>with emphasis</emph> embedded.</para>
05 <para>Last paragraph.</para>
06 </doc>

Produces the result file fmtsamp.fo :
01 <?xml version="1.0" encoding="utf-8"?>
02 <root xmlns="http://www.w3.org/1999/XSL/Format">
03 <layout-master-set><simple-page-master master-name="crane"
04 margin-top=".5in" margin-bottom=".5in" margin-left=".75in"
05 margin-right=".75in" page-width="8.5in" page-height="11in">
06 <region-body region-name="crane-content"/>
07 </simple-page-master></layout-master-set>
08 <page-sequence master-reference="crane">
09 <flow flow-name="crane-content" font-size="20pt">
10 <block space-before.optimum="20pt">First paragraph.</block>
11 <block space-before.optimum="20pt">Second para <inline
12 font-weight="bold">with emphasis</inline> embedded.</block>
13 <block space-before.optimum="20pt">Last paragraph.</block>
14 </flow></page-sequence></root>

Page 476 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Uncontrolled processes
Chapter 5 - Transformation environment
Section 3 - Serialization

There is no recommendation-based user or stylesheet control over or communication available
regarding the following processes implemented by the XSLT processor:

Result Tree Attribute Order:
- the XSLT processor may choose to serialize attribute nodes found in the result tree in

any order

Result Tree Serialization Instance Markup:
- the XSLT processor may choose any way it desires to serialize the content of text nodes

when the stylesheet does not instruct a given element to be emitted as a CDATA section:
- using XML built-in character entities for markup-sensitive characters
- using numeric character entities for markup-sensitive characters or characters not

present in the encoding character set
- using piecemeal CDATA sections

- any original markup syntax from the source file is lost when the source file is abstracted
into the source node tree

- other than an entire element emitted as a CDATA section, there is no control available
in the stylesheet over which serialization methods are used for text content

Result Tree Construction:
- the stylesheet writer is responsible for dictating the final content of the result tree
- the XSLT processor can use any means to effect the final result as described in the

recommendation without necessarily implementing the prose description found therein
- the side-effect free nature of the XSLT design (including the inability to change the value

of bound variables) allows an XSLT processor to process portions of the input in parallel
and combine the intermediate results into the single final result tree

- the of XSLT allows the processor to choose to not preserve the result node tree when
serializing the transformed information to an output instance, thus the result may never
actually exist as a complete tree within the processor

Page 202 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Example stylesheet with formatting constructs
(cont.)
Annex B - XSL formatting semantics introduction
Section 3 - Example stylesheet with formatting constructs

When rendered to PDF using FOP http://xml.apache.org/fop/ :

Page 477 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Communication facilities
Chapter 5 - Transformation environment
Section 4 - Communicating with the outside environment

There are different entities involved when writing and running transforms
- different facilities are available to communicate information between the entities
- the transform itself
- the writer of the transform
- the operator invoking the transform
- the processor/platform on which the transformation is being run
- the schema types available to use in the transform

Static analysis errors
- detected by the processor during the creation of the operation tree
- reported to the operator invoking the transform (hopefully the writer of the transform)

Dynamic evaluation errors
- detected by the processor during the creation of the result tree
- reported to the operator invoking the transform

Type errors
- during either static analysis or dynamic evaluation
- when the type of a value is not correct and cannot be cast to be correct in a given context

 No standardized errors or error representation in XPath 1
- each implementation defined their own error identification scheme

 Error identification by qualified name
- namespace "http://www.w3.org/2005/xqt-errors "
- name structure "XPSTnnnn" for static errors
- name structure "XPDYnnnn" for dynamic errors
- name structure "XPTYnnnn" for type errors
- any expanded name can be represented as a URI by making the local name into a local

identifier
- e.g. for an XPath syntax error:

- expanded name: "{http://www.w3.org/2005/xqt-errors}XPST0017 "
- qualified name: "e:XPST0017 " assuming

xmlns:e="http://www.w3.org/2005/xqt-errors"
- URI style: "http://www.w3.org/2005/xqt-errors#XPST0017 "

Page 203 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Annex C - Instruction, function and grammar
summaries

- Introduction - Quick summaries
- Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0
- Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

Page 478 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Schema type communication in XSLT 2
Chapter 5 - Transformation environment
Section 4 - Communicating with the outside environment

Information from the available schemas to the transform:

type-available(qname-string)

- returns Boolean value for the presence of the specified name of a schema type
- returns true or false to indicate the given type can be successfully referenced by

the transform without triggering a dynamic error
- available simple or complex types can be checked
- those available as built-in types
- those available as defined by the implementation
- some types can only be checked at run time, not at compile time:

- those available in imported schemas

Page 204 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Quick summaries
Annex C - Instruction, function and grammar summaries

This annex lists alphabetized references to the components of the specifications. Each entry
notes the chapter in this book where the construct is primarily described.

The specifications are rigorous references to all of the facilities and functions:

XSLT 1.0/XPath 1.0:
- http://www.w3.org/TR/1999/REC-xslt-19991116
- http://www.w3.org/TR/1999/REC-xpath-19991116

XSLT 2.0/XPath 2.0/XQuery 1.0
- http://www.w3.org/TR/2007/REC-xslt20-20070123/
- http://www.w3.org/TR/2007/REC-xpath20-20070123/
- http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123/
- http://www.w3.org/TR/2007/REC-xpath-functions-20070123/
- http://www.w3.org/TR/2007/REC-xslt-xquery-serialization-20070123/
- http://www.w3.org/TR/2007/REC-xquery-20070123/
- http://www.w3.org/TR/2007/REC-xquery-semantics-20070123/
- http://www.w3.org/TR/2007/REC-xqueryx-20070123

Page 479 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Communication facilities in XPath 2
Chapter 5 - Transformation environment
Section 4 - Communicating with the outside environment

Information from the transform to the operator:

error()

- raises runtime error {http://www.w3.org/2005/xqt-errors}FOER0000

error(qname)

error(qname?, string)

error(qname?, string, item*)

- raise a runtime error
- returns no value
- the first argument passes to the processor the string comprised of the de-referenced URI

of the qualified-name namespace, followed by "#", followed by the local name
- the second argument is a user-defined description and is handled in an

implementation-dependent fashion
- the third argument is a user-defined error object and is handled in an

implementation-dependent fashion

trace(item*, string)

- report a message of some kind (e.g. for diagnostics)
- returns the value of the first argument unchanged
- then the first value is converted to a string as in <xsl:value-of> and passed with the

second argument to the processor to be reported for diagnostic purposes
- the disposition of the information is handled in an implementation-dependent fashion

Page 205 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT 1.0 element summary
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

All elements in the XSLT vocabulary in alphabetical order follow. Note that the Kleene
operators '?', '*' and '+' (respectively zero or one, zero or more, and one or more) are used to
denote the cardinality of attributes and contained constructs. The content model operators ','
and '|' (respectively sequence and alternation) are also used. The brace brackets '{' and '}'
denote the use of an attribute value template. This information is mechanically derived from
the XSLT 1.0 Recommendation.

apply-imports (instruction) - Imported stylesheets (page 250)
- XSLT 1.0 5.6 Overriding Template Rules
- 01 <xsl:apply-imports/>

apply-templates (instruction) - Repositioning using "push" (page 158)
- XSLT 1.0 5.4 Applying Template Rules
- 01 <xsl:apply-templates mode=" qname"?

02 select=" node-set-expression"?>
03 (<xsl:sort>|<xsl:with-param>)*
04 </xsl:apply-templates>

attribute (instruction) - Constructing attribute nodes (page 361)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:attribute name=" qname|{ string-expression}"

02 namespace=" uri-reference|{ string-expression}"?>
03 template
04 </xsl:attribute>

attribute-set (top level element) - Constructing attribute nodes (page 362)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:attribute-set name=" qname"

02 use-attribute-sets=" qnames"?>
03 <xsl:attribute>*
04 </xsl:attribute-set>

call-template (instruction) - Named templates (page 232)
- XSLT 1.0 6 Named Templates
- 01 <xsl:call-template name=" qname">

02 <xsl:with-param>*
03 </xsl:call-template>

choose (instruction) - "If - Else If - Else" conditionality (page 140)
- XSLT 1.0 9.2 Conditional Processing with xsl:choose
- 01 <xsl:choose>

02 (<xsl:when>+,<xsl:otherwise>?)
03 </xsl:choose>

comment (instruction) - Constructing annotation nodes (page 366)
- XSLT 1.0 7.4 Creating Comments
- 01 <xsl:comment>

02 template
03 </xsl:comment>

copy (instruction) - Copying source tree nodes to the result tree (page 379)
- XSLT 1.0 7.5 Copying
- 01 <xsl:copy use-attribute-sets=" qnames"?>

02 template
03 </xsl:copy>

Page 480 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Communication facilities in XSLT
Chapter 5 - Transformation environment
Section 4 - Communicating with the outside environment

Information between the stylesheet and the operator:
- <xsl:param>

- operator to stylesheet
- invocation-time parameterized value for a globally scoped bound variable
- the specific mechanism of communication is not standardized
- the processor may choose to not support value specification

- a default value can be specified should no value be supplied at invocation
- <xsl:message>

- stylesheet to operator
- an arbitrary message

- status of progress
- content violation

- the specific mechanism of communication is not standardized
- the processor may choose to not support relating the message

- the content is any template (static or calculated)
- select= is an alternative to content

- terminate=" yes-or-no-AVT"
- instruction to stop any further processing of the stylesheet and source files

- allows the stylesheet to report on semantic validation
- when content has been detected as being incorrect, messages can report

problems to the operator
- structural well-formedness correctness has already been determined by the

XML processor inside the XSLT processor
- stylesheet could also use XPath to determine structural validity if the XSLT

processor does not use a validating XML processor
- allows the stylesheet to report progress when manipulating large data sets

Page 206 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

copy-of (instruction) - Copying source tree nodes to the result tree (page 379)
- XSLT 1.0 11.3 Using Values of Variables and Parameters with xsl:copy-of
- 01 <xsl:copy-of select=" expression"/>

decimal-format (top level element) - Decimal formatting in XSLT (page 295)
- XSLT 1.0 12.3 Number Formatting
- 01 <xsl:decimal-format decimal-separator=" char"?

02 digit=" char"?
03 grouping-separator=" char"?
04 infinity=" string"?
05 minus-sign=" char"?
06 name=" qname"?
07 NaN=" string"?
08 pattern-separator=" char"?
09 per-mille=" char"?
10 percent=" char"?
11 zero-digit=" char"?/>

element (instruction) - Constructing element nodes (page 364)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:element name=" qname|{ string-expression}"

02 namespace=" uri-reference|{ string-expression}"?
03 use-attribute-sets=" qnames"?>
04 template
05 </xsl:element>

fallback (instruction) - Extension mechanisms (page 256)
- XSLT 1.0 15 Fallback
- 01 <xsl:fallback>

02 template
03 </xsl:fallback>

for-each (instruction) - Repositioning using "pull" (page 155)
- XSLT 1.0 8 Repetition
- 01 <xsl:for-each select=" node-set-expression">

02 (<xsl:sort>*, template)
03 </xsl:for-each>

if (instruction) - "If - Then" conditionality (page 139)
- XSLT 1.0 9.1 Conditional Processing with xsl:if
- 01 <xsl:if test=" boolean-expression">

02 template
03 </xsl:if>

import - Imported stylesheets (page 246)
- XSLT 1.0 2.6 Combining Stylesheets
- 01 <xsl:import href=" uri-reference"/>

include (top level element) - Included stylesheets (page 245)
- XSLT 1.0 2.6 Combining Stylesheets
- 01 <xsl:include href=" uri-reference"/>

key (top level element) - XSLT key node referencing (page 320)
- XSLT 1.0 12.2 Keys
- 01 <xsl:key match=" pattern"

02 name=" qname"
03 use=" expression"/>

Page 481 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Communication facilities in XSLT (cont.)
Chapter 5 - Transformation environment
Section 4 - Communicating with the outside environment

Information from the processor to the stylesheet:
- obtaining the value of a system property about the XSLT processor:

- system-property(' prefix: property-name')
- XSLT namespace indicates reserved system properties:

- xsl:version
- returns a decimal number of the implementation level of XSLT supported

by the processor
- returns a string value that should be cast to a number for comparison

- xsl:vendor and xsl:vendor-url
- each return a string indicating, respectively, the vendor name and URL

- XSLT 2.0 has additional system properties
- xsl:product-name

- this should remain constant from one release to the next and across portable
platforms

- xsl:product-version
- this should vary from one release to the next and across non-portable platforms

- xsl:is-schema-aware
- returns "yes " or "no" based on ability

- xsl:supports-serialization
- returns "yes " or "no" based on ability

- xsl:supports-backwards-compatibility
- returns "yes " or "no" based on ability

- other namespaces indicate extension system properties
- xmlns: prefix=" processor-recognized-URI-reference"
- system-property(' prefix: property-name')
- the processor returns the empty string for an unrecognized property

Illustration:
- telling the operator the stylesheet uses features not supported by the processor

01 <xsl:if test="number(system-property('xsl:version')) < 2.">
02 <xsl:message terminate="yes">
03 Sorry this stylesheet requires XSLT 2.0; Complain
04 to '<xsl:value-of select="system-property('xsl:vendor')"/>'
05 at '<xsl:value-of select="system-property('xsl:vendor-url')"/>'
06 and get a new XSLT processor.
07 </xsl:message>
08 </xsl:if>

Page 207 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

message (instruction) - Communication facilities in XSLT (page 206)
- XSLT 1.0 13 Messages
- 01 <xsl:message terminate="yes|no"?>

02 template
03 </xsl:message>

namespace-alias (top level element) - Namespace protection (page 187)
- XSLT 1.0 7.1 Creating Elements and Attributes
- 01 <xsl:namespace-alias result-prefix=" prefix|#default"

02 stylesheet-prefix=" prefix|#default"/>

number (instruction) - Source tree numbering (page 391)
- XSLT 1.0 7.7 Numbering
- 01 <xsl:number count=" pattern"?

02 format=" string|{ string-expression}"?
03 from=" pattern"?
04 grouping-separator=" char|{ string-expression}"?
05 grouping-size=" number|{ string-expression}"?
06 lang=" nmtoken|{ string-expression}"?
07

letter-value="alphabetic|traditional|{ string-expression}"?
08 level="single|multiple|any"?
09 value=" number-expression"?/>

otherwise - "If - Else If - Else" conditionality (page 140)
- XSLT 1.0 9.2 Conditional Processing with xsl:choose
- 01 <xsl:otherwise>

02 template
03 </xsl:otherwise>

output (top level element) - Serializing the result tree (page 191)
- XSLT 1.0 16 Output
- 01 <xsl:output cdata-section-elements=" qnames"?

02 doctype-public=" string"?
03 doctype-system=" string"?
04 encoding=" string"?
05 indent="yes|no"?
06 media-type=" string"?
07 method="xml|html|text| qname-but-not-ncname"?
08 omit-xml-declaration="yes|no"?
09 standalone="yes|no"?
10 version=" nmtoken"?/>

param (top level element) - Variable and parameter binding (page 225)
- XSLT 1.0 11 Variables and Parameters
- 01 <xsl:param name=" qname"

02 select=" expression"?>
03 template
04 </xsl:param>

preserve-space (top level element) - White-space-only text nodes (page 88)
- XSLT 1.0 3.4 Whitespace Stripping
- 01 <xsl:preserve-space elements=" tokens"/>

processing-instruction (instruction) - Constructing annotation nodes (page 366)
- XSLT 1.0 7.3 Creating Processing Instructions
- 01 <xsl:processing-instruction name=" ncname|{ string-expression}">

02 template
03 </xsl:processing-instruction>

Page 482 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Communication facilities in XSLT (cont.)
Chapter 5 - Transformation environment
Section 4 - Communicating with the outside environment

Communication between the stylesheet and the processor (cont):
- conditional element inclusion:

- xsl:use-when= on a literal result element
- use-when= on an XSLT instruction
- a static evaluation of the transformation environment
- typically used with testing system properties but can test the presence of core and

extension functions (but not stylesheet functions)

Protecting a stylesheet from referencing an unavailable function:
01 <xsl:value-of select="t:abc()"
02 use-when="function-available('t:abc')"/>

An example from the XSLT 2.0 specification:
01 <xsl:include href="module-A.xsl"
02 use-when="system-property('xsl:vendor')='vendor-A'"/>
03 <xsl:include href="module-B.xsl"
04 use-when="system-property('xsl:vendor')='vendor-B'"/>

- at most one of the inclusions will happen, and possibly neither

Another example from the XSLT 2.0 specification:
01 <xsl:import-schema schema-location="http://example.com/schema"
02 use-when="system-property('xsl:is-schema-aware')='yes'"/>
03

04 <xsl:template match="/"
05 use-when="system-property('xsl:is-schema-aware')='yes'"
06 priority="2">
07 <xsl:result-document validation="strict">
08 <xsl:apply-templates/>
09 </xsl:result-document>
10 </xsl:template>
11

12 <xsl:template match="/">
13 <xsl:apply-templates/>
14 </xsl:template>

- the first two instructions are absent if the processor is not schema-aware
- note how <xsl:result-document> without an href= when constructing the result tree

is equivalent to using <xsl:document>

Page 208 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

sort - The sort instruction (page 407)
- XSLT 1.0 10 Sorting
- 01 <xsl:sort case-order="upper-first|lower-first|{ string-expression}"?

02

data-type="text|number| qname-but-not-ncname|{ string-expression}"?
03 lang=" nmtoken|{ string-expression}"?
04 order="ascending|descending|{ string-expression}"?
05 select=" string-expression"?/>

strip-space (top level element) - White-space-only text nodes (page 88)
- XSLT 1.0 3.4 Whitespace Stripping
- 01 <xsl:strip-space elements=" tokens"/>

stylesheet - The stylesheet document/container element (page 176)
- XSLT 1.0 2.2 Stylesheet Element
- 01 <xsl:stylesheet version=" number"

02 exclude-result-prefixes=" tokens"?
03 extension-element-prefixes=" tokens"?
04 id=" id"?>
05 (<xsl:import>*, top-level-elements)
06 </xsl:stylesheet>

template (top level element) - Repositioning using "push" (page 159)
- XSLT 1.0 5.3 Defining Template Rules
- 01 <xsl:template match=" pattern"?

02 mode=" qname"?
03 name=" qname"?
04 priority=" number"?>
05 (<xsl:param>*, template)
06 </xsl:template>

text (instruction) - Constructing text nodes (page 371)
- XSLT 1.0 7.2 Creating Text
- 01 <xsl:text disable-output-escaping="yes|no"?>

02 #PCDATA
03 </xsl:text>

transform - The stylesheet document/container element (page 176)
- XSLT 1.0 2.2 Stylesheet Element
- 01 <xsl:transform version=" number"

02 exclude-result-prefixes=" tokens"?
03 extension-element-prefixes=" tokens"?
04 id=" id"?>
05 (<xsl:import>*, top-level-elements)
06 </xsl:transform>

value-of (instruction) - Constructing result text (page 150)
- XSLT 1.0 7.6 Computing Generated Text
- 01 <xsl:value-of select=" string-expression"

02 disable-output-escaping="yes|no"?/>

variable (top level element) - Variable and parameter binding (page 224)
- XSLT 1.0 11 Variables and Parameters
- 01 <xsl:variable name=" qname"

02 select=" expression"?>
03 template
04 </xsl:variable>

Page 483 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 6 - Transform and data management

- Introduction - Why modularize logical and physical structures?
- Section 1 - Modularizing the logical structure of transforms
- Section 2 - Modularizing the physical structure of transforms
- Section 3 - Modularizing the source data

Page 209 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

when - "If - Else If - Else" conditionality (page 140)
- XSLT 1.0 9.2 Conditional Processing with xsl:choose
- 01 <xsl:when test=" boolean-expression">

02 template
03 </xsl:when>

with-param - Named templates (page 233)
- XSLT 1.0 11.6 Passing Parameters to Templates
- 01 <xsl:with-param name=" qname"

02 select=" expression"?>
03 template
04 </xsl:with-param>

Page 484 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
Chapter 6 - Transform and data management

Modularizing the logical structure supports development
- manipulating or reusing transform fragments within a given transform
- declaration and reuse of syntactic packages of transform logic and markup
- parameterization of a template
- writing a template once and using it many places
- defining a value and referencing it many places

This chapter overviews logical modularization using:
- XML internal general entities in XSLT stylesheets
- XML internal general entities in marked sections in external parameter entities
- variable bindings
- user-defined functions
- XSLT named templates

Page 210 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 1.0 and XSLT 1.0 function summary
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

All functions of both XPath 1.0 and XSLT 2.0 in alphabetical order follow. This information
is mechanically derived from the XPath 1.0 and XSLT 1.0 Recommendations.

boolean - Calculating values using Boolean functions (page 331)
- XPath 1.0 4.3 Boolean Functions
- boolean boolean(object)

ceiling - Calculating values using number functions (page 285)
- XPath 1.0 4.4 Number Functions
- number ceiling(number)

concat - Calculating values using string functions (page 290)
- XPath 1.0 4.2 String Functions
- string concat(string, string, string*)

contains - Calculating values using string functions (page 292)
- XPath 1.0 4.2 String Functions
- boolean contains(string, string)

count - Sequence operator and functions (page 325)
- XPath 1.0 4.1 Node Set Functions
- number count(node-set)

current - Current node referencing in XSLT (page 324)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- node-set current()

document - Document referencing in XSLT (page 262)
- XSLT 1.0 12.1 Multiple Source Documents
- node-set document(object, node-set?)

element-available - Extension mechanisms (page 255)
- XSLT 1.0 15 Fallback
- boolean element-available(string)

false - Calculating values using Boolean functions (page 331)
- XPath 1.0 4.3 Boolean Functions
- boolean false()

floor - Calculating values using number functions (page 285)
- XPath 1.0 4.4 Number Functions
- number floor(number)

format-number - Decimal formatting in XSLT (page 294)
- XSLT 1.0 12.3 Number Formatting
- string format-number(number, string, string?)

function-available - Extension mechanisms (page 254)
- XSLT 1.0 15 Fallback
- boolean function-available(string)

generate-id - Data-model identifier referencing (page 316)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- string generate-id(node-set?)

Page 485 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

Modularizing the physical structure of transforms supports reuse
- compartmentalization of code
- sharing and reuse of transform fragments across an organization
- support for organizational rules for source code control and management
- access to any built-in custom extension function

- if available in the processor implementation

This chapter overviews physical modularization using:
- XML external parsed general entities in XSLT stylesheets
- XSLT included and imported stylesheets
- extension functions
- XSLT extension elements (instructions)

Page 211 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

id - User XML identifier referencing (page 313)
- XPath 1.0 4.1 Node Set Functions
- node-set id(object)

key - XSLT key node referencing (page 321)
- XSLT 1.0 12.2 Keys
- node-set key(string, object)

lang - Calculating values using Boolean functions (page 331)
- XPath 1.0 4.3 Boolean Functions
- boolean lang(string)

last - Address evaluation context (page 109)
- XPath 1.0 4.1 Node Set Functions
- number last()

local-name - Calculating values using node-set-related expression functions (page 308)
- XPath 1.0 4.1 Node Set Functions
- string local-name(node-set?)

name - Calculating values using node-set-related expression functions (page 308)
- XPath 1.0 4.1 Node Set Functions
- string name(node-set?)

namespace-uri - Calculating values using node-set-related expression functions (page 308)
- XPath 1.0 4.1 Node Set Functions
- string namespace-uri(node-set?)

normalize-space - Calculating values using string functions (page 291)
- XPath 1.0 4.2 String Functions
- string normalize-space(string?)

not - Calculating values using Boolean functions (page 331)
- XPath 1.0 4.3 Boolean Functions
- boolean not(boolean)

number - Calculating values using number functions (page 282)
- XPath 1.0 4.4 Number Functions
- number number(object?)

position - Address evaluation context (page 109)
- XPath 1.0 4.1 Node Set Functions
- number position()

round - Calculating values using number functions (page 285)
- XPath 1.0 4.4 Number Functions
- number round(number)

starts-with - Calculating values using string functions (page 292)
- XPath 1.0 4.2 String Functions
- boolean starts-with(string, string)

string - Calculating values using string functions (page 287)
- XPath 1.0 4.2 String Functions
- string string(object?)

Page 486 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

Modularizing the data supports reuse
- compartmentalization of data
- focusing the responsibility of data to its most appropriate custodians
- sharing and reuse of content across an organization
- accessing content of different kinds through data projection

 XML

source data

projections

XSLT/

XQ

XML

transform

Result

data sources

Flat

files

Data

bases

Feeds

XML

 XML

 XML

Transform

Process

This chapter overviews physical modularization using:
- XML external unparsed entities
- XPath functions for data access
- XSLT functions for data access

Page 212 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

string-length - Calculating values using string functions (page 292)
- XPath 1.0 4.2 String Functions
- number string-length(string?)

substring - Calculating values using string functions (page 292)
- XPath 1.0 4.2 String Functions
- string substring(string, number, number?)

substring-after - Calculating values using string functions (page 292)
- XPath 1.0 4.2 String Functions
- string substring-after(string, string)

substring-before - Calculating values using string functions (page 292)
- XPath 1.0 4.2 String Functions
- string substring-before(string, string)

sum - Sequence operator and functions (page 330)
- XPath 1.0 4.4 Number Functions
- number sum(node-set)

system-property - Communication facilities in XSLT (page 207)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- object system-property(string)

translate - Calculating values using string functions (page 293)
- XPath 1.0 4.2 String Functions
- string translate(string, string, string)

true - Calculating values using Boolean functions (page 331)
- XPath 1.0 4.3 Boolean Functions
- boolean true()

unparsed-entity-uri - Unparsed entity referencing in XSLT (page 258)
- XSLT 1.0 12.4 Miscellaneous Additional Functions
- string unparsed-entity-uri(string)

Page 487 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

The XSLT instructions covered in this chapter are as follows.

Instructions related to logical modularization:
- <xsl:call-template>

- process a stand-alone template on demand
- <xsl:template>

- declare a template to be called by name as an instruction in XSLT
- <xsl:function>

- declare a function to be called by name as an subroutine in XPath
- <xsl:sequence>

- using XPath to express values returned by a function or a template
- <xsl:variable>

- declare a non-parameterized variable and its bound value
- <xsl:param>

- declare a parameterized variable and its default bound value
- <xsl:with-param>

- specify a binding value for a parameterized variable

Instructions related to physical modularization:
- <xsl:include>

- include a stylesheet without overriding stylesheet constructs
- <xsl:import>

- import a stylesheet while overriding stylesheet constructs
- <xsl:apply-imports>

- override the importation of template rules
- <xsl:next-match>

- override the priority and importation of template rules
- <xsl:fallback>

- accommodate the lack of implementation of an instruction element

Page 213 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 1.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

Location Paths (2)
RelativeLocationPath [3]
| AbsoluteLocationPath [2]

 ::= [1] LocationPath

'/' RelativeLocationPath [3]?
| AbbreviatedAbsoluteLocationPath [10]

 ::= [2] AbsoluteLocationPath

Step [4]
| RelativeLocationPath [3] '/' Step [4]
| AbbreviatedRelativeLocationPath [11]

 ::= [3] RelativeLocationPath

Location Steps (2.1)
AxisSpecifier [5] NodeTest [7] Predicate [8]*
| AbbreviatedStep [12]

 ::= [4] Step

AxisName [6] '::'
| AbbreviatedAxisSpecifier [13]

 ::= [5] AxisSpecifier

Axes (2.2)
'ancestor'
| 'ancestor-or-self'
| 'attribute'
| 'child'
| 'descendant'
| 'descendant-or-self'
| 'following'
| 'following-sibling'
| 'namespace'
| 'parent'
| 'preceding'
| 'preceding-sibling'
| 'self'

 ::= [6] AxisName

Node Tests (2.3)
NameTest [37]
| NodeType [38] '(' ')'
| 'processing-instruction' '(' Literal [29] ')'

 ::= [7] NodeTest

Predicates (2.4)
'[' PredicateExpr [9] ']' ::= [8] Predicate

Expr [14] ::= [9] PredicateExpr

Abbreviated Syntax (2.5)
'//' RelativeLocationPath [3] ::= [10] AbbreviatedAbsoluteLocationPath
RelativeLocationPath [3] '//' Step [4] ::= [11] AbbreviatedRelativeLocationPath

'.'
| '..'

 ::= [12] AbbreviatedStep

'@'? ::= [13] AbbreviatedAxisSpecifier

Expressions (3)

Page 488 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Why modularize logical and physical structures?
(cont.)
Chapter 6 - Transform and data management

The functions covered in this chapter are as follows.

Availability functions:
- element-available()

- determine the availability of an instruction element
- function-available()

- determine the availability of a function

Functions related to data modularization:
- collection()

- access to a collection of documents
- doc()

- access to multiple source documents
- doc-available()

- check for a document
- document()

- access to multiple source documents
- unparsed-entity-public-id()

- finding the public identifier of an unparsed entity
- unparsed-entity-uri()

- finding the URI of an unparsed entity
- unparsed-text()

- access to multiple documents
- unparsed-text-available()

- check for a document

Page 214 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Basics (3.1)
OrExpr [21] ::= [14] Expr

VariableReference [36]
| '(' Expr [14] ')'
| Literal [29]
| Number [30]
| FunctionCall [16]

 ::= [15] PrimaryExpr

Function Calls (3.2)
FunctionName [35] '(' (Argument [17] (',' Argument [17]
)*)? ')'

 ::= [16] FunctionCall

Expr [14] ::= [17] Argument

Node-sets (3.3)
PathExpr [19]
| UnionExpr [18] '|' PathExpr [19]

 ::= [18] UnionExpr

LocationPath [1]
| FilterExpr [20]
| FilterExpr [20] '/' RelativeLocationPath [3]
| FilterExpr [20] '//' RelativeLocationPath [3]

 ::= [19] PathExpr

PrimaryExpr [15]
| FilterExpr [20] Predicate [8]

 ::= [20] FilterExpr

Booleans (3.4)
AndExpr [22]
| OrExpr [21] 'or' AndExpr [22]

 ::= [21] OrExpr

EqualityExpr [23]
| AndExpr [22] 'and' EqualityExpr [23]

 ::= [22] AndExpr

RelationalExpr [24]
| EqualityExpr [23] '=' RelationalExpr [24]
| EqualityExpr [23] '!=' RelationalExpr [24]

 ::= [23] EqualityExpr

AdditiveExpr [25]
| RelationalExpr [24] '<' AdditiveExpr [25]
| RelationalExpr [24] '>' AdditiveExpr [25]
| RelationalExpr [24] '<=' AdditiveExpr [25]
| RelationalExpr [24] '>=' AdditiveExpr [25]

 ::= [24] RelationalExpr

Numbers (3.5)
MultiplicativeExpr [26]
| AdditiveExpr [25] '+' MultiplicativeExpr [26]
| AdditiveExpr [25] '-' MultiplicativeExpr [26]

 ::= [25] AdditiveExpr

UnaryExpr [27]
| MultiplicativeExpr [26] MultiplyOperator [34]
UnaryExpr [27]
| MultiplicativeExpr [26] 'div' UnaryExpr [27]
| MultiplicativeExpr [26] 'mod' UnaryExpr [27]

 ::= [26] MultiplicativeExpr

UnionExpr [18]
| '-' UnaryExpr [27]

 ::= [27] UnaryExpr

Page 489 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Internal general entities
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

An XSLT stylesheet is an XML document, hence:
- general entities can be declared in the document model

- defined in the associated schema or Document Type Definition (DTD)
- in the internal declaration subset
- in an external file of declarations

- can be used in the body of the stylesheet logic
- textual replacement allows common sequences of markup to be packaged
- instructions, content or any text can be defined and re-used

- the use of entities is not preserved
- the XML processor provides the parsed information to the XSLT processor without

distinguishing text encoded with or without entities
01 <?xml version="1.0"?><!--entisamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY Module-word "Module"> <!--teach=module, book=chapter-->
05 <!ENTITY Lesson-word "Lesson"> <!--teach=lesson, book=section-->
06 <!ENTITY nbsp " "> <!--known for HTML output, not in XML-->
07]>
08 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
09 version="1.0">
10 <xsl:output method="html"/><!--use hardwired browser entities-->
11 <xsl:template match="/"> <!-- root rule -->
12 <xsl:for-each select="/course/module">
13 <p>
14 <xsl:text>&Module-word;: </xsl:text>
15 <xsl:value-of select="title"/>
16 <xsl:apply-templates select="lesson"/>
17 </p>
18 </xsl:for-each>
19 </xsl:template>
20 <!-- ... -->
21 <xsl:template match="lesson">
22 <p>
23 <xsl:text>&Lesson-word;: </xsl:text>
24 <xsl:value-of select="title"/>
25 <xsl:text> - &Module-word;: </xsl:text>
26 <xsl:value-of select="../title"/>
27 </p>
28 </xsl:template>
29 </xsl:stylesheet>

Page 215 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Lexical Structure (3.7)
'(' | ')' | '[' | ']' | '.' | '..' | '@' | ',' | '::'
| NameTest [37]
| NodeType [38]
| Operator [32]
| FunctionName [35]
| AxisName [6]
| Literal [29]
| Number [30]
| VariableReference [36]

 ::= [28] ExprToken

'"' [^"]* '"'
| "'" [^']* "'"

 ::= [29] Literal

Digits [31] ('.' Digits [31]?)?
| '.' Digits [31]

 ::= [30] Number

[0-9]+ ::= [31] Digits
OperatorName [33]
| MultiplyOperator [34]
| '/' | '//' | '|' | '+' | '-' | '=' | '!=' | '<' | '<='
| '>' | '>='

 ::= [32] Operator

'and' | 'or' | 'mod' | 'div' ::= [33] OperatorName
'*' ::= [34] MultiplyOperator

QName[XML-Names-6] - NodeType [38] ::= [35] FunctionName
'$' QName [XML-Names-6] ::= [36] VariableReference

'*'
| NCName [XML-Names-4] ':' '*'
| QName [XML-Names-6]

 ::= [37] NameTest

'comment'
| 'text'
| 'processing-instruction'
| 'node'

 ::= [38] NodeType

S[XML-3] ::= [39] ExprWhitespace

Page 490 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Internal general entities (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

The entities can be defined in an external declaration subset rather than the internal declaration
subset

- useful for managing a set of entities shared across many stylesheets in a project or an
organization

Consider an external parameter entity file "entisamp2.ent ":
01 <!ENTITY Module-word "Module"> <!--teach=module, book=chapter-->
02 <!ENTITY Lesson-word "Lesson"> <!--teach=lesson, book=section-->
03 <!ENTITY nbsp " "> <!--known for HTML output, not in XML-->

Pulled into all stylesheets using the document type declaration:
01 <?xml version="1.0"?><!--entisamp2.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet SYSTEM "entisamp2.ent">
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06 ...

This can help in a strategy of supporting namespace evolution
- declare the namespace URI string in an entity

01 ...
02 <!ENTITY foo-ns "urn:X-Crane:foo:v2">
03 ...

- use the entity in a namespace declaration
01 ...
02 xmlns:foo="&foo-ns;"
03 ...

Page 216 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT 1.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 1 - Vocabulary, functions and grammars XSLT 1.0 and XPath 1.0

Template Rules (5)

Patterns (5.2)
LocationPathPattern [2]
| Pattern [1] '|' LocationPathPattern [2]

 ::= [1] Pattern

'/' RelativePathPattern [4]?
| IdKeyPattern [3] (('/' | '//')
RelativePathPattern [4])?
| '//'? RelativePathPattern [4]

 ::= [2] LocationPathPattern

'id' '(' Literal [XPath-1.0-29] ')'
| 'key' '(' Literal [XPath-1.0-29] ',' Literal [XPath-1.0-29]
')'

 ::= [3] IdKeyPattern

StepPattern [5]
| RelativePathPattern [4] '/' StepPattern [5]
| RelativePathPattern [4] '//' StepPattern [5]

 ::= [4] RelativePathPattern

ChildOrAttributeAxisSpecifier [6] NodeTest [XPath-1.0-7]
Predicate [XPath-1.0-8]*

 ::= [5] StepPattern

AbbreviatedAxisSpecifier [XPath-1.0-13]
| ('child' | 'attribute') '::'

 ::= [6] ChildOrAttributeAxisSpecifier

Page 491 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Internal general entities (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

The declarations of internal general entities can be influenced by parameter entity declarations
in an external declaration to control the XSLT processor matching of source nodes:

- the XSLT processor acts on the presence of nodes in the source node tree, not on the
types of elements found in the document model, hence one can have match patterns for
elements never expected to be found

- conditional marked sections are only allowed in external declaration subsets, not in
internal declaration subsets, nor in the document element itself

- consider the need to have an XSLT processor behave two different ways for a given
element type:

- can manipulate the element node names being matched by templates in match=
- can manipulate the names of modes in which the templates are collected in mode=

Using a conditional marked section with a parameter entity in an external declaration subset,
one could have:
01 <!--
02 marksamp.ent - External declaration subset example.
03 -->
04

05 <!ENTITY % style2 "IGNORE"> <!--assume without decl means default 1-->
06 <![%style2;[<!--requesting override of 1 with 2-->
07 <!ENTITY pane-style-1 "zzz-ignore-pane">
08 <!ENTITY pane-style-2 "pane">
09]]>
10 <!ENTITY pane-style-1 "pane"> <!--used if not already defined-->
11 <!ENTITY pane-style-2 "zzz-ignore-pane">
12

13 <!--end of file-->

In this example, the value of the %style2; parameter entity dictates the value of the two
general entities when used in the body of the stylesheet.

Page 217 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT 2.0 element summary
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

All elements in the XSLT vocabulary in alphabetical order follow. Note that the Kleene
operators '?', '*' and '+' (respectively zero or one, zero or more, and one or more) are used to
denote the cardinality of attributes and contained constructs. The content model operators ','
and '|' (respectively sequence and alternation) are also used. The brace brackets '{' and '}'
denote the use of an attribute value template. This information is mechanically derived from
the XSLT 1.0 Recommendation.

analyze-string - String analysis in XSLT 2.0 (page 305)
- XSLT 2.0 - 15.1 The xsl:analyze-string instruction
- <!-- Category: instruction -->

<xsl:analyze-string
 select = expression
 regex = { string }
 flags? = { string }>
 <!-- Content: (xsl:matching-substring ?, xsl:non-matching-substring?,

xsl:fallback*) -->
</xsl:analyze-string>

apply-imports - Imported stylesheets (page 250)
- XSLT 2.0 - 6.7 Overriding Template Rules
- <!-- Category: instruction -->

<xsl:apply-imports>
 <!-- Content: xsl:with-param* -->
</xsl:apply-imports>

apply-templates - Repositioning using "push" (page 158)
- XSLT 2.0 - 6.3 Applying Template Rules
- <!-- Category: instruction -->

<xsl:apply-templates
 select? = expression
 mode? = token>
 <!-- Content: (xsl:sort | xsl:with-param)* -->
</xsl:apply-templates>

attribute - Constructing attribute nodes (page 361)
- XSLT 2.0 - 11.3 Creating Attribute Nodes Using xsl:attribute
- <!-- Category: instruction -->

<xsl:attribute
 name = { qname }
 namespace? = { uri-reference }
 select? = expression
 separator? = { string }
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:attribute>

attribute-set - Constructing attribute nodes (page 362)
- XSLT 2.0 - 10.2 Named Attribute Sets
- <!-- Category: declaration -->

<xsl:attribute-set
 name = qname
 use-attribute-sets? = qnames>
 <!-- Content: xsl:attribute* -->
</xsl:attribute-set>

Page 492 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Internal general entities (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Referring to the external declaration subset, one could then have:
01 <?xml version="1.0"?><!--marksamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03

04 <!DOCTYPE xsl:stylesheet [
05 <!ENTITY % style2 "INCLUDE">
06 <!ENTITY % marksamp-ent SYSTEM "marksamp.ent">
07 %marksamp-ent;
08]>
09 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
10 version="1.0">
11

12 <xsl:output method="text"/>
13

14 <xsl:template match="&pane-style-1;">
15 <xsl:text>Pane Style 1: </xsl:text>
16 <xsl:apply-templates/>
17 </xsl:template>
18

19 <xsl:template match="&pane-style-2;">
20 <xsl:text>Pane Style 2: </xsl:text>
21 <xsl:apply-templates/>
22 </xsl:template>
23

24 </xsl:stylesheet>

Page 218 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

call-template - Named templates (page 232)
- XSLT 2.0 - 10.1 Named Templates
- <!-- Category: instruction -->

<xsl:call-template
 name = qname>
 <!-- Content: xsl:with-param* -->
</xsl:call-template>

character-map - Character maps (page 199)
- XSLT 2.0 - 20.1 Character Maps
- <!-- Category: declaration -->

<xsl:character-map
 name = qname
 use-character-maps? = qnames>
 <!-- Content: (xsl:output-character*) -->
</xsl:character-map>

choose - "If - Else If - Else" conditionality (page 140)
- XSLT 2.0 - 8.2 Conditional Processing with xsl:choose
- <!-- Category: instruction -->

<xsl:choose>
 <!-- Content: (xsl:when+, xsl:otherwise?) -->
</xsl:choose>

comment - Constructing annotation nodes (page 366)
- XSLT 2.0 - 11.8 Creating Comments
- <!-- Category: instruction -->

<xsl:comment
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:comment>

copy - Copying source tree nodes to the result tree (page 379)
- XSLT 2.0 - 11.9.1 Shallow Copy
- <!-- Category: instruction -->

<xsl:copy
 copy-namespaces? = "yes" | "no"
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:copy>

copy-of - Copying source tree nodes to the result tree (page 379)
- XSLT 2.0 - 11.9.2 Deep Copy
- <!-- Category: instruction -->

<xsl:copy-of
 select = expression
 copy-namespaces? = "yes" | "no"
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip" />

Page 493 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Internal general entities (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

The end result reveals the use of the general entities:
01 Pane Style 2: Pane 1
02 Pane Style 2: Pane 2
03 Pane Style 2: Pane 3

This technique is also useful when wanting to conditionally not process an element by
selectively defining the following ¬es-element; general entity to engage the higher
priority template rule, or defaulting with a bogus name to engage the lower priority template
rule:
01 <xsl:template match="¬es-element;" priority="1">
02 <hr noshade="noshade"/>
03 <i>Notes:</i>

04 <xsl:apply-templates/>
05 </xsl:template>
06

07 <xsl:template match="notes"/> <!--assume empty-->

Page 219 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

decimal-format - Decimal formatting in XSLT (page 295)
- XSLT 2.0 - 16.4.1 Defining a Decimal Format
- <!-- Category: declaration -->

<xsl:decimal-format
 name? = qname
 decimal-separator? = char
 grouping-separator? = char
 infinity? = string
 minus-sign? = char
 NaN? = string
 percent? = char
 per-mille? = char
 zero-digit? = char
 digit? = char
 pattern-separator? = char />

document - Constructing document nodes (page 369)
- XSLT 2.0 - 11.5 Creating Document Nodes
- <!-- Category: instruction -->

<xsl:document
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname>
 <!-- Content: sequence-constructor -->
</xsl:document>

element - Constructing element nodes (page 364)
- XSLT 2.0 - 11.2 Creating Element Nodes Using xsl:element
- <!-- Category: instruction -->

<xsl:element
 name = { qname }
 namespace? = { uri-reference }
 inherit-namespaces? = "yes" | "no"
 use-attribute-sets? = qnames
 type? = qname
 validation? = "strict" | "lax" | "preserve" | "strip">
 <!-- Content: sequence-constructor -->
</xsl:element>

fallback - Extension mechanisms (page 256)
- XSLT 2.0 - 18.2.3 Fallback
- <!-- Category: instruction -->

<xsl:fallback>
 <!-- Content: sequence-constructor -->
</xsl:fallback>

for-each - Repositioning using "pull" (page 155)
- XSLT 2.0 - 7 Repetition
- <!-- Category: instruction -->

<xsl:for-each
 select = expression>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each>

Page 494 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variables and parameters
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Variables and parameters are very useful in transforms, they:
- are a value bound to a reference to be reused multiple times without recalculation

- note the use of the word "variable" is in the mathematical sense of a placeholder
or a symbol, not in the traditional programming sense of a storage location that can
be modified

- are named using namespace qualified names
- the default namespace is not used when not using a namespace prefix
- can prevent inadvertent variable name collision when mixing transform fragments

- are referenced in expressions as: $variable-qname
- cannot be referenced when the expression is a match pattern

- template rules
- key collection declarations

- can be of any type returned by an expression
- XPath 1.0 data types

- source tree node set
- string
- number
- boolean

- XSLT 1.0 result tree fragment data type
- a direct assignment of rich markup described by the template

- an empty result tree fragment is treated as an empty string
- the template can include conditional processing of the template value

- XSLT 2.0 temporary tree data type
- temporary trees replace XSLT 1.0 result tree fragments

- an empty temporary tree is treated as an empty sequence
- XPath 2.0 sequence types

- see Sequence types (page 74)
- any prefix can be used to reference the W3C Schema namespace
- e.g.: xmlns:xs="http://www.w3.org/2001/XMLSchema"

- user-defined data types
- from imported schema declarations

- can be validated at compile-time and run-time
- using as=" sequence-type"

Page 220 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

for-each-group - Built-in grouping facilities in XSLT 2.0 (page 434)
- XSLT 2.0 - 14.3 The xsl:for-each-group Element
- <!-- Category: instruction -->

<xsl:for-each-group
 select = expression
 group-by? = expression
 group-adjacent? = expression
 group-starting-with? = pattern
 group-ending-with? = pattern
 collation? = { uri }>
 <!-- Content: (xsl:sort*, sequence-constructor) -->
</xsl:for-each-group>

function - User-defined functions (page 240)
- XSLT 2.0 - 10.3 Stylesheet Functions
- <!-- Category: declaration -->

<xsl:function
 name = qname
 as? = sequence-type
 override? = "yes" | "no">
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:function>

if - "If - Then" conditionality (page 139)
- XSLT 2.0 - 8.1 Conditional Processing with xsl:if
- <!-- Category: instruction -->

<xsl:if
 test = expression>
 <!-- Content: sequence-constructor -->
</xsl:if>

import - Imported stylesheets (page 246)
- XSLT 2.0 - 3.10.3 Stylesheet Import
- <!-- Category: declaration -->

<xsl:import
 href = uri-reference />

import-schema - Importing schema definitions (page 185)
- XSLT 2.0 - 3.14 Importing Schema Components
- <!-- Category: declaration -->

<xsl:import-schema
 namespace? = uri-reference
 schema-location? = uri-reference>
 <!-- Content: xs:schema? -->
</xsl:import-schema>

include - Included stylesheets (page 245)
- XSLT 2.0 - 3.10.2 Stylesheet Inclusion
- <!-- Category: declaration -->

<xsl:include
 href = uri-reference />

Page 495 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variables and parameters (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Scope of variables
- when defined with a top-level declaration are globally scoped

- global scope includes entire import tree, both importing and imported
- all templates, globally scoped variables and other top-level constructs in all

stylesheet fragments regardless of where the fragment is incorporated
- when defined as a parameter of a template or a function are locally scoped

- any expression within the construct can see the variable
- when defined inside a top-level construct are locally scoped

- scope is only the following siblings of the declaration and their descendants
- a local variable does not shadow another local variable

- a duplicate declaration error is reported if this is attempted
- a local variable shadows another local variable

- global variables in importing stylesheets shadow other global variables in imported
stylesheets

- not so for included stylesheets
- described later in the discussion of importation

- local variables shadow global variables

Page 221 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

key - XSLT key node referencing (page 320)
- XSLT 2.0 - 16.3.1 The xsl:key Declaration
- <!-- Category: declaration -->

<xsl:key
 name = qname
 match = pattern
 use? = expression
 collation? = uri>
 <!-- Content: sequence-constructor -->
</xsl:key>

matching-substring - String analysis in XSLT 2.0 (page 305)
- XSLT 2.0 - 15.1 The xsl:analyze-string instruction
- <xsl:matching-substring>

 <!-- Content: sequence-constructor -->
</xsl:matching-substring>

message - Communication facilities in XSLT (page 206)
- XSLT 2.0 - 17 Messages
- <!-- Category: instruction -->

<xsl:message
 select? = expression
 terminate? = { "yes" | "no" }>
 <!-- Content: sequence-constructor -->
</xsl:message>

namespace - Constructing namespace nodes (page 368)
- XSLT 2.0 - 11.7 Creating Namespace Nodes
- <!-- Category: instruction -->

<xsl:namespace
 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:namespace>

namespace-alias - Namespace protection (page 187)
- XSLT 2.0 - 11.1.4 Namespace Aliasing
- <!-- Category: declaration -->

<xsl:namespace-alias
 stylesheet-prefix = prefix | "#default"
 result-prefix = prefix | "#default" />

next-match - Imported stylesheets (page 250)
- XSLT 2.0 - 6.7 Overriding Template Rules
- <!-- Category: instruction -->

<xsl:next-match>
 <!-- Content: (xsl:with-param | xsl:fallback)* -->
</xsl:next-match>

non-matching-substring - String analysis in XSLT 2.0 (page 305)
- XSLT 2.0 - 15.1 The xsl:analyze-string instruction
- <xsl:non-matching-substring>

 <!-- Content: sequence-constructor -->
</xsl:non-matching-substring>

Page 496 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variables and parameters (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Classical programming approaches do not apply:
- the theory behind this approach is referred to as side-effect free programming

- an important implementation constraint that supports parallelism
- has a robust heritage in LISP-like languages and their derivatives

- e.g. "what is the chapter number?"
- cannot increment a global variable at the start of each chapter

- variables cannot vary in their scope once they are bound with a value
- must ask "what is the current chapter number amongst the chapter siblings?"
- can use the axes to count nodes

- using count() with the nodes along the sibling axis of an ancestral node
- e.g.

count($n/ancestor-or-self::chapter[1]/preceding-sibling::chapter)
+ 1

- easier in XSLT to let the processor, not the stylesheet, do the counting
- <xsl:number> (see page 391) provides a declarative built-in facility

- count for the stylesheet writer the quantity of nodes or values required
- supplants the need to do a lot of "programming" in the stylesheet
- the act of counting in a stylesheet is awkward when using bound

variables as opposed to classical schemes of using global variables
- may need to use recursively called templates, sometimes with axes

- a called template introduces a new local scope for variables
- stylesheets with explicit counting logic can be very verbose and

difficult to follow
- numbering facilities are declarative and easy to follow

- no need to debug algorithm implementations in stylesheet
- e.g. <xsl:number count="chapter"/>

- the text of the ordinal number of the closest ancestral chapter (or self)

XSLT has features to process the inherent hierarchical structure of XML
- a classical approach of defining and utilizing variables and array-like structures is more

than likely not necessary and is usually far more awkward than a stylesheet approach
- e.g. a classical "programmer's" approach uses <xsl:number> , <xsl:variable> and

count() to deal with one's location in the document hierarchy
- count the current node amongst its siblings using <xsl:number> and counting the

parent's children using count() assigning both to variables and then checking
these variables to see where one is in the set of elements

- the stylesheet equivalent approach would be to use position() and last()
- process only the elements in question as a current node list and use position()

and last() functions without any variables

Page 222 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

number - Source tree numbering (page 391)
- XSLT 2.0 - 12 Numbering
- <!-- Category: instruction -->

<xsl:number
 value? = expression
 select? = expression
 level? = "single" | "multiple" | "any"
 count? = pattern
 from? = pattern
 format? = { string }
 lang? = { nmtoken }
 letter-value? = { "alphabetic" | "traditional" }
 ordinal? = { string }
 grouping-separator? = { char }
 grouping-size? = { number
} />

otherwise - "If - Else If - Else" conditionality (page 140)
- XSLT 2.0 - 8.2 Conditional Processing with xsl:choose
- <xsl:otherwise>

 <!-- Content: sequence-constructor -->
</xsl:otherwise>

output - Serializing the result tree (page 191)
- XSLT 2.0 - 20 Serialization
- <!-- Category: declaration -->

<xsl:output
 name? = qname
 method? = "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname
 byte-order-mark? = "yes" | "no"
 cdata-section-elements? = qnames
 doctype-public? = string
 doctype-system? = string
 encoding? = string
 escape-uri-attributes? = "yes" | "no"
 include-content-type? = "yes" | "no"
 indent? = "yes" | "no"
 media-type? = string
 normalization-form? = "NFC" | "NFD" | "NFKC" | "NFKD" |
"fully-normalized" | "none" | nmtoken
 omit-xml-declaration? = "yes" | "no"
 standalone? = "yes" | "no" | "omit"
 undeclare-prefixes? = "yes" | "no"
 use-character-maps? = qnames
 version? = nmtoken />

output-character - Character maps (page 199)
- XSLT 2.0 - 20.1 Character Maps
- <xsl:output-character

 character = char
 string = string />

Page 497 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variable and parameter binding
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Very important distinctions regarding result tree fragments and temporary trees

Result tree fragment/

Temporary tree

<xsl:variable name="tree">

 <xsl:copy-of select="
 address
 "/>

</xsl:variable>

Atomic sequence

<xsl:variable name="atom2"

 as="xs:anyAtomicType+"

 select="
 expression
 "/>

<xsl:variable name="atom1"

 as="xs:string+">

 <xsl:for-each select="
 e
xpression
">

 <xsl:value-of select="."/>

 </xsl:for-each>

</xsl:variable>

<xsl:variable name="set"

 select="
 address
 "/>

<xsl:variable name="set"

 as="node()+"

 select="
 address
 "/>

Node set

Node sequence

<xsl:variable name="seq"

 as="node()+">

 <xsl:copy-of select="
 address
 "/>

</xsl:variable>

A node set has only references into the source tree

An atomic sequence is a flat sequence of values without node relationships

A result tree fragment or temporary tree is made of created and copied nodes:
- has a root node regardless of what gets copied or created
- has axes relating the new nodes as siblings that are children of the root

A node sequence is a copy of nodes and their structures
- no root node and copied nodes are not siblings

Recall the sequence types (page 74).

Page 223 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

param - Variable and parameter binding (page 225)
- XSLT 2.0 - 9.2 Parameters
- <!-- Category: declaration -->

<xsl:param
 name = qname
 select? = expression
 as? = sequence-type
 required? = "yes" | "no"
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:param>

perform-sort - Sorting sequences (page 406)
- XSLT 2.0 - 13.2 Creating a Sorted Sequence
- <!-- Category: instruction -->

<xsl:perform-sort
 select? = expression>
 <!-- Content: (xsl:sort+, sequence-constructor) -->
</xsl:perform-sort>

preserve-space - White-space-only text nodes (page 88)
- XSLT 2.0 - 4.4 Stripping Whitespace from a Source Tree
- <!-- Category: declaration -->

<xsl:preserve-space
 elements = tokens />

processing-instruction - Constructing annotation nodes (page 366)
- XSLT 2.0 - 11.6 Creating Processing Instructions
- <!-- Category: instruction -->

<xsl:processing-instruction
 name = { ncname }
 select? = expression>
 <!-- Content: sequence-constructor -->
</xsl:processing-instruction>

Page 498 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variable and parameter binding (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Binding a value to a variable:
01 <xsl:variable name=" variable-qname"
02 select=" expression-value"/>
03

04 <!--XSLT 1.0 empty string; XSLT 2.0 empty sequence if as=-->
05 <xsl:variable name=" variable-qname"/>
06

07 <!--XSLT 1.0 result-tree fragment; XSLT 2.0 temporary tree-->
08 <xsl:variable name=" variable-qname">
09 sequence-constructor
10 </xsl:variable>
11

12 <!--XSLT 2.0 declaration of a sequence with validation-->
13 <xsl:variable name=" variable-qname"
14 as=" sequence-type" ...>

- specifies the value associated with a given variable's name
- the expression value may be an explicit value or the end result of an expression evaluation
- the content may include any template construction including conditional instructions

- an empty result-tree fragment is interpreted as an empty string
- an empty temporary tree value is interpreted as an empty sequence
- the evaluation of the template in the variable declaration is done a single time and

the resulting result-tree nodes are ready to be copied on demand to the result tree
without re-evaluation

- the as= specifies the precise data type of the variable without any implicit casting
- a Kleene operator can be used for indicating multiple items are allowed
- 01 <xsl:variable name="x1">abc</xsl:variable>

02 <xsl:variable name="x2" as="xs:string">def</xsl:variable>
- $x1 is a temporary tree, $x2 is a sequence of one item

- 01 <xsl:variable name="x3" as="xs:string+">
02 <xsl:text>ghi</xsl:text>
03 <xsl:text>jkl</xsl:text>
04 </xsl:variable>

- $x3 is a sequence of two items
- - the formal declaration of a result tree fragment is as follows:

- 01 <xsl:variable name="x1" as="document-node()">
02 <xsl:document>abc</xsl:document>
03 </xsl:variable>

- unexpected errors as in the following are triggered when as= is not precise
01 <xsl:variable name="n-error" select="3" as="xs:positiveInteger"/>

- "3" is of type xs:integer , not xs:positiveInteger
- could use select="xs:positiveInteger(3)" to cast

Page 224 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

result-document - Multiple result trees (page 201)
- XSLT 2.0 - 19.1 Creating Final Result Trees
- <!-- Category: instruction -->

<xsl:result-document
 format? = { qname }
 href? = { uri-reference }
 validation? = "strict" | "lax" | "preserve" | "strip"
 type? = qname
 method? = { "xml" | "html" | "xhtml" | "text" | qname-but-not-ncname
 }
 byte-order-mark? = { "yes" | "no" }
 cdata-section-elements? = { qnames }
 doctype-public? = { string }
 doctype-system? = { string }
 encoding? = { string }
 escape-uri-attributes? = { "yes" | "no" }
 include-content-type? = { "yes" | "no" }
 indent? = { "yes" | "no" }
 media-type? = { string }
 normalization-form? = { "NFC" | "NFD" | "NFKC" | "NFKD"
| "fully-normalized" | "none" | nmtoken }
 omit-xml-declaration? = { "yes" | "no" }
 standalone? = { "yes" | "no" | "omit" }
 undeclare-prefixes? = { "yes" | "no" }
 use-character-maps? = qnames
 output-version? = { nmtoken }>
 <!-- Content: sequence-constructor -->
</xsl:result-document>

sequence - Named templates (page 236)
- XSLT 2.0 - 11.10 Constructing Sequences
- <!-- Category: instruction -->

<xsl:sequence
 select = expression>
 <!-- Content: xsl:fallback* -->
</xsl:sequence>

sort - The sort instruction (page 407)
- XSLT 2.0 - 13.1 The xsl:sort Element
- <xsl:sort

 select? = expression
 lang? = { nmtoken }
 order? = { "ascending" | "descending" }
 collation? = { uri }
 stable? = { "yes" | "no" }
 case-order? = { "upper-first" | "lower-first" }
 data-type? = { "text" | "number" | qname-but-not-ncname }>
 <!-- Content: sequence-constructor -->
</xsl:sort>

strip-space - White-space-only text nodes (page 88)
- XSLT 2.0 - 4.4 Stripping Whitespace from a Source Tree
- <!-- Category: declaration -->

<xsl:strip-space
 elements = tokens />

Page 499 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variable and parameter binding (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

A parameter (short for parameterized variable) is identical to a variable except that the
expression supplied is considered a default value if an overriding value has not been supplied.

Defaulting a parameterized variable to a value:
01 <xsl:param name=" variable-qname"
02 select=" expression-value"/>
03

04 <!--XSLT 1.0 empty string; XSLT 2.0 empty sequence if as=-->
05 <xsl:param name=" variable-qname"/>
06

07 <!--XSLT 1.0 result-tree fragment; XSLT 2.0 temporary tree-->
08 <xsl:param name=" variable-qname">
09 sequence-constructor
10 </xsl:param>
11

12 <!--XSLT 2.0 declaration of a sequence with validation-->
13 <xsl:param name=" variable-qname"
14 as=" sequence-type" ...>
15

16 <!--XSLT 2.0 mandating a parameter's calling definition-->
17 <xsl:param name=" variable-qname"
18 required=" yes-or-no-default-no" ...>
19

20 <!--XSLT 2.0 indication of an automatically-passed parameter-->
21 <xsl:param name=" variable-qname"
22 tunnel=" yes-or-no-default-no" ...>

- identical in syntax and use to <xsl:variable>
- a default value is bound to the parameter when a value is not supplied at invocation

- top-level parameterized variables are bound at stylesheet invocation
- an XSLT processor can choose to not support this

- template parameterized variables are bound at template invocation
- required= indicates if a value has to be supplied

- a static error for explicit calls and a run-time error for command-line invocation
- tunnel= indicates if a value is expected to have been automatically passed

- having such a parameter prevents the need to match the parameters of the calling
instruction with those of the called template

- it is required that this declaration have the attribute in order to access an
automatically-passed parameter

An XSLT processor may offer an invocation-time facility to supply values to bind to top-level
global parameters

- recall Communication facilities in XSLT (page 206)

Declarations for parameters in a template must precede all other instructions in the template.

Page 225 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

stylesheet - The stylesheet document/container element (page 176)
- XSLT 2.0 - 3.6 Stylesheet Element
- <xsl:stylesheet

 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list
 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:stylesheet>

template - Repositioning using "push" (page 159)
- XSLT 2.0 - 6.1 Defining Templates
- <!-- Category: declaration -->

<xsl:template
 match? = pattern
 name? = qname
 priority? = number
 mode? = tokens
 as? = sequence-type>
 <!-- Content: (xsl:param*, sequence-constructor) -->
</xsl:template>

text - Constructing text nodes (page 371)
- XSLT 2.0 - 11.4.2 Creating Text Nodes Using xsl:text
- <!-- Category: instruction -->

<xsl:text
 [disable-output-escaping]?
= "yes" | "no">
 <!-- Content: #PCDATA -->
</xsl:text>

transform - The stylesheet document/container element (page 176)
- XSLT 2.0 - 3.6 Stylesheet Element
- <xsl:transform

 id? = id
 extension-element-prefixes? = tokens
 exclude-result-prefixes? = tokens
 version = number
 xpath-default-namespace? = uri
 default-validation? = "preserve" | "strip"
 default-collation? = uri-list
 input-type-annotations? = "preserve" | "strip" | "unspecified">
 <!-- Content: (xsl:import*, other-declarations) -->
</xsl:transform>

value-of - Constructing result text (page 150)
- XSLT 2.0 - 11.4.3 Generating Text with xsl:value-of
- <!-- Category: instruction -->

<xsl:value-of
 select? = expression
 separator? = { string }
 [disable-output-escaping]?
= "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:value-of>

Page 500 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variable and parameter binding (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

XSLT notes the semantics of variable assignment are similar to the semantics of Java final
local variable declaration with an initialization value, as in:
01 final Object x = "value";

as opposed to Java variable assignment that is not available in XSLT:
01 x = "value";

An example of the direct assignment of a result tree fragment to a variable, then two ways to
access the variable is as follows:
01 <xsl:variable name="test"> <!--variable assignment-->
02 <para>test para 1</para> <!--of rich structure-->
03 <para>test para 2</para>
04 </xsl:variable>
05 <xsl:copy-of select="$test"/> <!--add fragment to result-->
06 <xsl:copy-of select="$test"/> <!--again-->
07 <value><xsl:value-of select="$test"/></value> <!--add value-->

The resulting markup (two copies and concatenated text node value) is:
01 <para>test para 1</para>
02 <para>test para 2</para>
03 <para>test para 1</para>
04 <para>test para 2</para>
05 <value>test para 1test para 2</value>

Consider the following stylesheet varsamp.xsl that reports sample assigned values to variables
of each type (note that while in this example the top-level variable assignments follow the
reporting in the flow of the stylesheet source, the top-level variables are assigned before the
processing of the source node tree begins):

Page 226 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

variable - Variable and parameter binding (page 224)
- XSLT 2.0 - 9.1 Variables
- <!-- Category: declaration -->

<!-- Category: instruction -->
<xsl:variable
 name = qname
 select? = expression
 as? = sequence-type>
 <!-- Content: sequence-constructor -->
</xsl:variable>

when - "If - Else If - Else" conditionality (page 140)
- XSLT 2.0 - 8.2 Conditional Processing with xsl:choose
- <xsl:when

 test = expression>
 <!-- Content: sequence-constructor -->
</xsl:when>

with-param - Named templates (page 233)
- XSLT 2.0 - 10.1.1 Passing Parameters to Templates
- <xsl:with-param

 name = qname
 select? = expression
 as? = sequence-type
 tunnel? = "yes" | "no">
 <!-- Content: sequence-constructor -->
</xsl:with-param>

Page 501 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variable and parameter binding (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

01 <?xml version="1.0"?><!--varsamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03

04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06

07 <xsl:template match="/"> <!--report variables-->
08 <root example="{{{$var3a}}} - attribute">
09 Var1a (result-tree copy-of): {<xsl:copy-of select="$var1a"/>}
10 Var1a (result-tree value-of): {<xsl:value-of select="$var1a"/>}
11 Var1b (result-tree copy-of): {<xsl:copy-of select="$var1b"/>}
12 Var1b (result-tree value-of): {<xsl:value-of select="$var1b"/>}
13 Var1c (result-tree value-of): {<xsl:value-of select="$var1c"/>}
14 Var2a (node set copy-of): {<xsl:copy-of select="$var2a"/>}
15 Var2a (node set value-of): {<xsl:value-of select="$var2a"/>}
16 Var2b (node set value-of): {<xsl:value-of select="$var2b"/>}
17 Var3a (string value-of): {<xsl:value-of select="$var3a"/>}
18 Var3b (string value-of): {<xsl:value-of select="$var3b"/>}
19 Var3c (string value-of): {<xsl:value-of select="$var3c"/>}
20 Var4a (number value-of): <xsl:value-of select="$var4a"/>
21 Var4b (number value-of): <xsl:value-of select="$var4b"/>
22 Var5a (boolean var1a value-of): <xsl:value-of select="$var5a"/>
23 Var5b (boolean var1b value-of): <xsl:value-of select="$var5b"/>
24 Var5c (boolean var1c value-of): <xsl:value-of select="$var5c"/>
25 Var5d (boolean var2a value-of): <xsl:value-of select="$var5d"/>
26 Var5e (boolean var2b value-of): <xsl:value-of select="$var5e"/>
27 Var5f (boolean var3a value-of): <xsl:value-of select="$var5f"/>
28 Var5g (boolean var3b value-of): <xsl:value-of select="$var5g"/>
29 Var5h (boolean var4a value-of): <xsl:value-of select="$var5h"/>
30 Var5i (boolean var4b value-of): <xsl:value-of select="$var5i"/>
31 Var5j (boolean value-of): <xsl:value-of select="$var5j"/>
32 Var5k (boolean value-of): <xsl:value-of select="$var5k"/>
33 <xsl:text>
</xsl:text></root>
34 </xsl:template>

Page 227 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 2.0 and XSLT 2.0 function summary
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

All functions of both XPath 2.0 and XSLT 2.0 in alphabetical order follow. This information
is mechanically derived from the XPath 2.0 Functions and XSLT 2.0 Recommendations.

abs - Calculating values using number functions (page 285)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric abs(numeric)

adjust-date-to-timezone - Date and time functions and operators (page 341)
- XPath 2.0 - 10.7 Timezone Adjustment Functions on Dates and Time Values
- xs:date adjust-date-to-timezone(xs:date)

xs:date adjust-date-to-timezone(xs:date, xs:dayTimeDuration)

adjust-dateTime-to-timezone - Date and time functions and operators (page 341)
- XPath 2.0 - 10.7 Timezone Adjustment Functions on Dates and Time Values
- xs:dateTime adjust-dateTime-to-timezone(xs:dateTime)

xs:dateTime adjust-dateTime-to-timezone(xs:dateTime,
xs:dayTimeDuration)

adjust-time-to-timezone - Date and time functions and operators (page 341)
- XPath 2.0 - 10.7 Timezone Adjustment Functions on Dates and Time Values
- xs:time adjust-time-to-timezone(xs:time)

xs:time adjust-time-to-timezone(xs:time, xs:dayTimeDuration)

avg - Sequence operator and functions (page 330)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType avg(xs:anyAtomicType*)

base-uri - Calculating values using node-set-related expression functions (page 309)
- XPath 2.0 - 2 Accessors
- xs:anyURI base-uri()

xs:anyURI base-uri(node())

boolean - Calculating values using Boolean functions (page 331)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:boolean boolean(item()*)

ceiling - Calculating values using number functions (page 285)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric ceiling(numeric)

codepoint-equal - Calculating values using string functions (page 290)
- XPath 2.0 - 7.3 Equality and Comparison of Strings
- xs:boolean codepoint-equal(xs:string, xs:string)

codepoints-to-string - Calculating values using string functions (page 290)
- XPath 2.0 - 7.2 Functions to Assemble and Disassemble Strings
- xs:string codepoints-to-string(xs:integer*)

collection - Document referencing in XPath 2 (page 261)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- node()* collection()

node()* collection(xs:string)

Page 502 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variable and parameter binding (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

01 <xsl:variable name="var1a"> <!--result tree-->
02 <xyz attr1="test">This is test 1</xyz>
03 <xyz>This is test 2</xyz>
04 </xsl:variable>
05 <xsl:variable name="var1b">
06 <xsl:apply-templates select="//abc"/> <!--processing result-->
07 </xsl:variable>
08 <xsl:variable name="var1c">
09 <xsl:apply-templates select="//def"/> <!--processing result-->
10 </xsl:variable>
11 <xsl:variable name="var2a" select="//abc"/> <!--node list-->
12 <xsl:variable name="var2b" select="//def"/>
13 <xsl:variable name="var3a" select="'string1-val'"/> <!--string-->
14 <xsl:variable name="var3b" select="''"/>
15 <xsl:variable name="var3c"/>
16 <xsl:variable name="var4a" select="42"/> <!--number-->
17 <xsl:variable name="var4b" select="0"/>
18 <xsl:variable name="var5a" select="boolean($var1a)"/><!--bool.-->
19 <xsl:variable name="var5b" select="boolean($var1b)"/>
20 <xsl:variable name="var5c" select="boolean($var1c)"/>
21 <xsl:variable name="var5d" select="boolean($var2a)"/>
22 <xsl:variable name="var5e" select="boolean($var2b)"/>
23 <xsl:variable name="var5f" select="boolean($var3a)"/>
24 <xsl:variable name="var5g" select="boolean($var3b)"/>
25 <xsl:variable name="var5h" select="boolean($var4a)"/>
26 <xsl:variable name="var5i" select="boolean($var4b)"/>
27 <xsl:variable name="var5j" select="true()"/>
28 <xsl:variable name="var5k" select="false()"/>
29

30 <xsl:template match="abc">
31 <out attr2="val"><xsl:apply-templates/></out>
32 </xsl:template>
33

34 </xsl:stylesheet>

Page 228 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

compare - Calculating values using string functions (page 290)
- XPath 2.0 - 7.3 Equality and Comparison of Strings
- xs:integer compare(xs:string, xs:string)

xs:integer compare(xs:string, xs:string, xs:string)

concat - Calculating values using string functions (page 290)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string concat(xs:anyAtomicType, xs:anyAtomicType,)

contains - Calculating values using string functions (page 292)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:boolean contains(xs:string, xs:string)

xs:boolean contains(xs:string, xs:string, xs:string)

count - Sequence operator and functions (page 325)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:integer count(item()*)

current - Current node referencing in XSLT (page 324)
- XSLT 2.0 - 16.6.1 current
- item() current()

current-date - Date and time functions and operators (page 341)
- XPath 2.0 - 16 Context Functions
- xs:date current-date()

current-dateTime - Date and time functions and operators (page 341)
- XPath 2.0 - 16 Context Functions
- xs:dateTime current-dateTime()

current-group - Built-in grouping facilities in XSLT 2.0 (page 435)
- XSLT 2.0 - 14.1 The Current Group
- item()* current-group()

current-grouping-key - Built-in grouping facilities in XSLT 2.0 (page 435)
- XSLT 2.0 - 14.2 The Current Grouping Key
- xs:anyAtomicType? current-grouping-key()

current-time - Date and time functions and operators (page 341)
- XPath 2.0 - 16 Context Functions
- xs:time current-time()

data - Calculating values using node-set-related expression functions (page 309)
- XPath 2.0 - 2 Accessors
- xs:anyAtomicType* data(item()*)

dateTime - Date and time functions and operators (page 341)
- XPath 2.0 - 5 Constructor Functions
- xs:dateTime dateTime(xs:date, xs:time)

day-from-date - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer day-from-date(xs:date)

day-from-dateTime - Date and time functions and operators (page 342)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer day-from-dateTime(xs:dateTime)

Page 503 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Variable and parameter binding (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

When acting on the following simple instance varsamp.xml :
01 <?xml version="1.0"?>
02 <test>Test
03 <abc test="attr">(abc 1 value)</abc> input.
04 <abc>(abc 2 value)</abc></test>

The stylesheet produces the following result:
01 <?xml version="1.0" encoding="utf-8"?>
02 <root example="{string1-val} - attribute">
03 Var1a (result-tree copy-of): {<xyz attr1="test">This is test
1</xyz><xyz>This is test 2</xyz>}
04 Var1a (result-tree value-of): {This is test 1This is test 2}
05 Var1b (result-tree copy-of): {<out attr2="val">(abc 1 value)</out><out
 attr2="val">(abc 2 value)</out>}
06 Var1b (result-tree value-of): {(abc 1 value)(abc 2 value)}
07 Var1c (result-tree value-of): {}
08 Var2a (node set copy-of): {<abc test="attr">(abc 1 value)</abc><abc>(abc
 2 value)</abc>}
09 Var2a (node set value-of): {(abc 1 value)}
10 Var2b (node set value-of): {}
11 Var3a (string value-of): {string1-val}
12 Var3b (string value-of): {}
13 Var3c (string value-of): {}
14 Var4a (number value-of): 42
15 Var4b (number value-of): 0
16 Var5a (boolean var1a value-of): true
17 Var5b (boolean var1b value-of): true
18 Var5c (boolean var1c value-of): true
19 Var5d (boolean var2a value-of): true
20 Var5e (boolean var2b value-of): false
21 Var5f (boolean var3a value-of): true
22 Var5g (boolean var3b value-of): false
23 Var5h (boolean var4a value-of): true
24 Var5i (boolean var4b value-of): false
25 Var5j (boolean value-of): true
26 Var5k (boolean value-of): false
27 </root>

Page 229 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

days-from-duration - Date and time functions and operators (page 344)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer days-from-duration(xs:duration)

deep-equal - Sequence operator and functions (page 328)
- XPath 2.0 - 15.3 Equals, Union, Intersection and Except
- xs:boolean deep-equal(item()*, item()*)

xs:boolean deep-equal(item()*, item()*, string)

default-collation - Calculating values using string functions (page 289)
- XPath 2.0 - 16 Context Functions
- xs:string default-collation()

distinct-values - Sequence operator and functions (page 328)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:anyAtomicType* distinct-values(xs:anyAtomicType*)

xs:anyAtomicType* distinct-values(xs:anyAtomicType*, xs:string)

doc - Document referencing in XPath 2 (page 260)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- document-node() doc(xs:string)

doc-available - Document referencing in XPath 2 (page 260)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- xs:boolean doc-available(xs:string)

document - Document referencing in XSLT (page 262)
- XSLT 2.0 - 16.1 Multiple Source Documents
- node()* document(uri-sequence)

node()* document(uri-sequence, base-node)

document-uri - Calculating values using node-set-related expression functions (page 309)
- XPath 2.0 - 2 Accessors
- xs:anyURI document-uri(node())

element-available - Extension mechanisms (page 255)
- XSLT 2.0 - 18.2.2 Testing Availability of Instructions
- xs:boolean element-available(element-name)

empty - Sequence operator and functions (page 325)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:boolean empty(item()*)

encode-for-uri - URI functions (page 338)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string encode-for-uri(xs:string)

ends-with - Calculating values using string functions (page 292)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:boolean ends-with(xs:string, xs:string)

xs:boolean ends-with(xs:string, xs:string, xs:string)

Page 504 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Conditional variable assignment
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

 Conditional constructs in the XPath 2.0 expression
- because of variable scope, the conditional construct cannot go around the declaration
- the conditional construct must go around the declared value

01 <xsl:variable name="use-fee"
02 select="if($discount='yes') then (:not as much:) $base*.85
03 else if($discount='internal') then (:nada:) 0
04 else (:normal amount:) $base"/>
05 <xsl:if test="$use-fee">
06 <p>Fee: <xsl:value-of select="$use-fee"/></p>
07 </xsl:if>

Page 230 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

error - Communication facilities in XPath 2 (page 205)
- XPath 2.0 - 3 The Error Function
- error()

error(xs:QName)

error(xs:QName, xs:string)

error(xs:QName, xs:string, item()*)

escape-html-uri - URI functions (page 338)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string escape-html-uri(xs:string)

exactly-one - Sequence operator and functions (page 326)
- XPath 2.0 - 15.2 Functions That Test the Cardinality of Sequences
- item() exactly-one(item()*)

exists - Sequence operator and functions (page 325)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:boolean exists(item()*)

false - Calculating values using Boolean functions (page 331)
- XPath 2.0 - 9.1 Additional Boolean Constructor Functions
- xs:boolean false()

floor - Calculating values using number functions (page 285)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric floor(numeric)

format-date - Formatting date and time strings (page 345)
- XSLT 2.0 - 16.5 Formatting Dates and Times
- xs:string? format-date (value, picture, language, calendar, country

)

xs:string? format-date(value, picture)

format-dateTime - Formatting date and time strings (page 345)
- XSLT 2.0 - 16.5 Formatting Dates and Times
- xs:string? format-dateTime (value, picture, language, calendar, country

)

xs:string? format-dateTime(value, picture)

format-number - Decimal formatting in XSLT (page 294)
- XSLT 2.0 - 16.4 Number Formatting
- xs:string format-number(value, picture)

xs:string format-number(value, picture, decimal-format-name)

format-time - Formatting date and time strings (page 345)
- XSLT 2.0 - 16.5 Formatting Dates and Times
- xs:string? format-time (value, picture, language, calendar, country

)

xs:string? format-time(value, picture)

function-available - Extension mechanisms (page 254)
- XSLT 2.0 - 18.1.1 Testing Availability of Functions
- xs:boolean function-available(function-name)

xs:boolean function-available(function-name, arity)

Page 505 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Conditional variable assignment (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

 Conditional constructs in the assignment of a result tree fragment to a variable
- calculating the value of a variable based on criteria
- variables can be declared as result tree fragment

- converted to required type when being used
- conditional constructs dictate value assigned

Consider the display of monetary values excerpted from round.xsl :
01 <xsl:template match="fee">
02 <xsl:variable select="ancestor::order/@discounted"
03 name="discount"/> <!--get ancestral attribute-->
04 <xsl:variable name="base" select="@base-amount"/><!--get base-->
05 <xsl:variable name="use-fee"><!--based on ancestral attribute-->
06 <xsl:choose>
07 <xsl:when test="$discount='yes'"> <!--not as much-->
08 <xsl:value-of select="$base * .85"/>
09 </xsl:when>
10 <xsl:when test="$discount='internal'"> <!--nothing at all-->
11 <xsl:text>0</xsl:text>
12 </xsl:when>
13 <xsl:otherwise> <!--normal amount-->
14 <xsl:value-of select="$base"/>
15 </xsl:otherwise>
16 </xsl:choose>
17 </xsl:variable>
18 <xsl:if test="number($use-fee)">
19 <p>Fee: <xsl:value-of select="$use-fee"/></p>
20 </xsl:if>
21 </xsl:template>

The intuitive (but incorrect) approach would be to put the variable declaration inside the
multiple alternative construct:

- the variable's local scope does not extend beyond the encapsulating construct
- scope is only the declaration's following siblings and their descendants

- the correct approach is to define the variable at the desired scope and bind as the value
the result of the alternative construct

Recall the difference between a result tree fragment and an atomic value (page 223)

Page 231 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

generate-id - Data-model identifier referencing (page 316)
- XSLT 2.0 - 16.6.4 generate-id
- xs:string generate-id()

xs:string generate-id(node)

hours-from-dateTime - Date and time functions and operators (page 342)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer hours-from-dateTime(xs:dateTime)

hours-from-duration - Date and time functions and operators (page 344)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer hours-from-duration(xs:duration)

hours-from-time - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer hours-from-time(xs:time)

id - User XML identifier referencing (page 313)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- element()* id(xs:string*)

element()* id(xs:string*, node())

idref - User XML identifier referencing (page 315)
- XPath 2.0 - 15.5 Functions and Operators that Generate Sequences
- node()* idref(xs:string*)

node()* idref(xs:string*, node())

implicit-timezone - Date and time functions and operators (page 341)
- XPath 2.0 - 16 Context Functions
- xs:dayTimeDuration implicit-timezone()

in-scope-prefixes - Qualified-name functions (page 337)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:string* in-scope-prefixes(element())

index-of - Sequence operator and functions (page 328)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- xs:integer* index-of(xs:anyAtomicType*, xs:anyAtomicType)

xs:integer* index-of(xs:anyAtomicType*, xs:anyAtomicType, xs:string
)

insert-before - Sequence operator and functions (page 329)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* insert-before(item()*, xs:integer, item()*)

iri-to-uri - URI functions (page 338)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string iri-to-uri(xs:string)

key - XSLT key node referencing (page 321)
- XSLT 2.0 - 16.3.2 The key Function
- node()* key(key-name, key-value)

node()* key(key-name, key-value, top)

Page 506 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

A named template:
- has presence in the node structure of the stylesheet
- is unlike internal entities because of parameterized variables
- has the ability to be invoked (called) from many places

- with the same or different invocation parameter binding values each time
- each invocation introduces a new local scope within which variables can have

different bound values than used in previously engaged local scopes
- is used to construct the result tree when invoked
- can have parameterized variables
- can have any content

- nothing at all
- to simple text
- to a full result tree template with instructions (including invocations of other named

templates)
01 <xsl:template name="template-qname">
02 <xsl:param name=" variable-qname" select=" default-value"/>

- gives the template a label to use when being called
- match= attribute can also be specified

- using both allows a template to be used in either or both push and pull approaches
as required by the transformation

01 <xsl:call-template name="template-qname">
02 <xsl:with-param name=" variable-qname" select=" overriding-value"/>

- constructs the result node tree with the named template
- different than a result tree fragment variable in that the template of a result tree fragment

variable is processed once and saved when declared and then copied to the result tree
while a named template is processed when called and added "on the fly" to the result
tree

Page 232 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

lang - Calculating values using Boolean functions (page 331)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:boolean lang(xs:string)

xs:boolean lang(xs:string, node())

last - Address evaluation context (page 109)
- XPath 2.0 - 16 Context Functions
- xs:integer last()

local-name - Calculating values using node-set-related expression functions (page 308)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:string local-name()

xs:string local-name(node())

local-name-from-QName - Qualified-name functions (page 336)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:NCName local-name-from-QName(xs:QName)

lower-case - Calculating values using string functions (page 293)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string lower-case(xs:string)

matches - Regular expressions (page 303)
- XPath 2.0 - 7.6 String Functions that Use Pattern Matching
- xs:boolean matches(xs:string, xs:string)

xs:boolean matches(xs:string, xs:string, xs:string)

max - Sequence operator and functions (page 330)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType max(xs:anyAtomicType*)

xs:anyAtomicType max(xs:anyAtomicType*, string)

min - Sequence operator and functions (page 330)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType min(xs:anyAtomicType*)

xs:anyAtomicType min(xs:anyAtomicType*, string)

minutes-from-dateTime - Date and time functions and operators (page 342)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer minutes-from-dateTime(xs:dateTime)

minutes-from-duration - Date and time functions and operators (page 344)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer minutes-from-duration(xs:duration)

minutes-from-time - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer minutes-from-time(xs:time)

month-from-date - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer month-from-date(xs:date)

month-from-dateTime - Date and time functions and operators (page 342)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer month-from-dateTime(xs:dateTime)

Page 507 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Passing a binding value for <xsl:param> at invocation time:
01 <xsl:with-param name=" variable-qname"
02 select=" expression-value"/>
03

04 <!--XSLT 1.0 empty string; XSLT 2.0 empty sequence if as=-->
05 <xsl:with-param name=" variable-qname"/>
06

07 <!--XSLT 1.0 result-tree fragment; XSLT 2.0 temporary tree-->
08 <xsl:with-param name=" variable-qname">
09 sequence-constructor
10 </xsl:with-param>
11

12 <!--XSLT 2.0 declaration of a sequence with validation-->
13 <xsl:with-param name=" variable-qname"
14 as=" sequence-type" ...>
15

16 <!--XSLT 2.0 indication of an automatically-passed parameter-->
17 <xsl:with-param name=" variable-qname"
18 tunnel=" yes-or-no-default-no" ...>

- parameters are declared with the same kinds of expressions used to declare the values
of <xsl:variable>

Passing a tunneled parameter makes the parameter available to all nested called templates (not
functions)

- the parameter is automatically passed down nested template calls (but not functions)
until the process returns from this invocation

- a template's <xsl:param> must likewise have tunnel="yes" to access
automatically-passed parameters

Page 233 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

months-from-duration - Date and time functions and operators (page 344)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer months-from-duration(xs:duration)

name - Calculating values using node-set-related expression functions (page 308)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:string name()

xs:string name(node())

namespace-uri - Calculating values using node-set-related expression functions (page 308)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:anyURI namespace-uri()

xs:anyURI namespace-uri(node())

namespace-uri-for-prefix - Qualified-name functions (page 337)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:anyURI namespace-uri-for-prefix(xs:string, element())

namespace-uri-from-QName - Qualified-name functions (page 336)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:anyURI namespace-uri-from-QName(xs:QName)

nilled - Calculating values using node-set-related expression functions (page 309)
- XPath 2.0 - 2 Accessors
- xs:boolean nilled(node())

node-name - Calculating values using node-set-related expression functions (page 308)
- XPath 2.0 - 2 Accessors
- xs:QName node-name(node())

normalize-space - Calculating values using string functions (page 291)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string normalize-space()

xs:string normalize-space(xs:string)

normalize-unicode - Calculating values using string functions (page 288)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string normalize-unicode(xs:string)

xs:string normalize-unicode(xs:string, xs:string)

not - Calculating values using Boolean functions (page 331)
- XPath 2.0 - 9.3 Functions on Boolean Values
- xs:boolean not(item()*)

number - Calculating values using number functions (page 282)
- XPath 2.0 - 14 Functions and Operators on Nodes
- xs:double number()

xs:double number(xs:anyAtomicType)

one-or-more - Sequence operator and functions (page 326)
- XPath 2.0 - 15.2 Functions That Test the Cardinality of Sequences
- item()+ one-or-more(item()*)

position - Address evaluation context (page 109)
- XPath 2.0 - 16 Context Functions
- xs:integer position()

Page 508 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Invoking a named template with parameter binding values:
01 <xsl:call-template name=" template-qname">
02 optional <xsl:with-param> parameter binding values
03 </xsl:call-template>

- supplies values to bind to variables in the called template for its use
- constructs the result node tree with the named template

Applying templates:
- during push one can pass parameter values to the templates that match nodes

- the values get bound to parameterized variables declared in the template rules
invoked by the XSLT processor for each given node selected

- passing parameter binding values can reduce the amount of calculation performed
by an XSLT script if values can be calculated at an early step in the process and
passed on

- built-in template rules do not support the explicit passing of parameter values in that
any passed parameter is not passed along to the templates applied

- a common problem when passing parameters is to neglect to supply a template rule
for a node, thus invoking the appropriate built-in template rule that continues
processing but without any passed parameters

- built-in template rules do support the explicit passing of parameter values in that every
passed parameter is passed along to the templates applied

- in addition, tunnel parameters are automatically passed, including through built-in
templates

01 <xsl:apply-templates select=" node-set-expression">
02 optional <xsl:with-param> parameter binding values
03 </xsl:apply-templates>

Page 234 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

prefix-from-QName - Qualified-name functions (page 336)
- XPath 2.0 - 11.2 Functions and Operators Related to QNames
- xs:NCName prefix-from-QName(xs:QName)

QName - Qualified-name functions (page 336)
- XPath 2.0 - 11.1 Additional Constructor Functions for QNames
- xs:QName QName(xs:string, xs:string)

regex-group - String analysis in XSLT 2.0 (page 305)
- XSLT 2.0 - 15.2 Captured Substrings
- xs:string regex-group(group-number)

remove - Sequence operator and functions (page 329)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* remove(item()*, xs:integer)

replace - Regular expressions (page 304)
- XPath 2.0 - 7.6 String Functions that Use Pattern Matching
- xs:string replace(xs:string, xs:string, xs:string)

xs:string replace(xs:string, xs:string, xs:string, xs:string)

resolve-QName - Qualified-name functions (page 336)
- XPath 2.0 - 11.1 Additional Constructor Functions for QNames
- xs:QName resolve-QName(xs:string, element())

resolve-uri - URI functions (page 338)
- XPath 2.0 - 8 Functions on anyURI
- xs:anyURI resolve-uri(xs:string)

xs:anyURI resolve-uri(xs:string, xs:string)

reverse - Sequence operator and functions (page 329)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* reverse(item()*)

root - Calculating values using node-set-related expression functions (page 309)
- XPath 2.0 - 14 Functions and Operators on Nodes
- node() root()

node() root(node())

round - Calculating values using number functions (page 285)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric round(numeric)

round-half-to-even - Calculating values using number functions (page 285)
- XPath 2.0 - 6.4 Functions on Numeric Values
- numeric round-half-to-even(numeric)

numeric round-half-to-even(numeric, xs:integer)

seconds-from-dateTime - Date and time functions and operators (page 342)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:decimal seconds-from-dateTime(xs:dateTime)

seconds-from-duration - Date and time functions and operators (page 344)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:decimal seconds-from-duration(xs:duration)

Page 509 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

 Rigorous stylesheet writing can catch stylesheet writing errors and runtime errors
- one can declare the kinds of items that are created by the template rule
- if the processor can statically determine the return type is wrong, an error is flagged
- the as= attribute indicates how the template result must be structured
- remember the restrictions on types indicated on Sequence types (page 74)

- but only those for which "instance of " can be applied can be used
- the set of types is smaller when the processor is not schema-aware

Examples:
- the processor will report test5bad as being unable to convert the template to a number

01 <xsl:template name="test1" as="xs:decimal">
02 5
03 </xsl:template>
04

05 <xsl:template name="test2" as="xs:string">
06 <xsl:text>abc</xsl:text>
07 </xsl:template>
08

09 <xsl:template name="test3" as="node()">
10 <abc><def/></abc>
11 </xsl:template>
12

13 <xsl:template name="test4" as="node()+">
14 <abc><def/></abc><ghi><jkl/></ghi>
15 </xsl:template>
16

17 <xsl:template name="test5bad" as="xs:decimal">
18 abc
19 </xsl:template>

Page 235 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

seconds-from-time - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:decimal seconds-from-time(xs:time)

starts-with - Calculating values using string functions (page 292)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:boolean starts-with(xs:string, xs:string)

xs:boolean starts-with(xs:string, xs:string, xs:string)

static-base-uri - Calculating values using node-set-related expression functions (page 309)
- XPath 2.0 - 16 Context Functions
- xs:anyURI static-base-uri()

string - Calculating values using string functions (page 287)
- XPath 2.0 - 2 Accessors
- xs:string string()

xs:string string(item())

string-join - Calculating values using string functions (page 290)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string string-join(xs:string*, xs:string)

string-length - Calculating values using string functions (page 292)
- XPath 2.0 - 7.4 Functions on String Values
- xs:integer string-length()

xs:integer string-length(xs:string)

string-to-codepoints - Calculating values using string functions (page 290)
- XPath 2.0 - 7.2 Functions to Assemble and Disassemble Strings
- xs:integer* string-to-codepoints(xs:string)

subsequence - Sequence operator and functions (page 329)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* subsequence(item()*, xs:double)

item()* subsequence(item()*, xs:double, xs:double)

substring - Calculating values using string functions (page 292)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string substring(xs:string, xs:double)

xs:string substring(xs:string, xs:double, xs:double)

substring-after - Calculating values using string functions (page 292)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:string substring-after(xs:string, xs:string)

xs:string substring-after(xs:string, xs:string, xs:string)

substring-before - Calculating values using string functions (page 292)
- XPath 2.0 - 7.5 Functions Based on Substring Matching
- xs:string substring-before(xs:string, xs:string)

xs:string substring-before(xs:string, xs:string, xs:string)

sum - Sequence operator and functions (page 330)
- XPath 2.0 - 15.4 Aggregate Functions
- xs:anyAtomicType sum(xs:anyAtomicType*)

xs:anyAtomicType sum(xs:anyAtomicType*, xs:anyAtomicType)

Page 510 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

A template can return nodes and/or values using XPath instead of XSLT
- use <xsl:sequence select=" expr"> to return values using XPath
- use content and constructors to return values using XSLT

- e.g. <xsl:text> and <xsl:value-of select=" expr"> create text nodes
- recall non-empty <xsl:value-of> (page 150) to return the cardinality of one

- the content can be any number of constructions
- a sequence selecting a string is less expensive than building and returning a text node
- e.g. <xsl:sequence select="'x'"/> is better than <xsl:text>x</xsl:text>

01 <xsl:template name="test6" as="xs:double">
02 <xsl:sequence select="image/@zoom * 10"/>
03 </xsl:template>
04

05 <xsl:template name="test7" as="xs:double?">
06 <xsl:sequence select="image/@zoom * 10"/>
07 </xsl:template>

- if the image/@zoom attribute is missing, test6 throws a runtime error and test7 does
not

01 <xsl:template name="test7bad" as="xs:string">
02 <xsl:text>abc</xsl:text>
03 <xsl:text>abc</xsl:text>
04 </xsl:template>
05

06 <xsl:template name="test8" as="xs:string">
07 <xsl:value-of>
08 <xsl:text>abc</xsl:text>
09 <xsl:text>abc</xsl:text>
10 </xsl:value-of>
11 </xsl:template>

- in the first example there are two values being returned which violates the cardinality of
1 declared by the as= constraint

- in the second example, the <xsl:value-of> converts the construction into a single
string to satisfy the constraint

Page 236 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

system-property - Communication facilities in XSLT (page 207)
- XSLT 2.0 - 16.6.5 system-property
- xs:string system-property(property-name)

timezone-from-date - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:dayTimeDuration timezone-from-date(xs:date)

timezone-from-dateTime - Date and time functions and operators (page 342)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:dayTimeDuration timezone-from-dateTime(xs:dateTime)

timezone-from-time - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:dayTimeDuration timezone-from-time(xs:time)

tokenize - Regular expressions (page 303)
- XPath 2.0 - 7.6 String Functions that Use Pattern Matching
- xs:string* tokenize(xs:string, xs:string)

xs:string* tokenize(xs:string, xs:string, xs:string)

trace - Communication facilities in XPath 2 (page 205)
- XPath 2.0 - 4 The Trace Function
- item()* trace(item()*, xs:string)

translate - Calculating values using string functions (page 293)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string translate(xs:string, xs:string, xs:string)

true - Calculating values using Boolean functions (page 331)
- XPath 2.0 - 9.1 Additional Boolean Constructor Functions
- xs:boolean true()

type-available - Schema type communication in XSLT 2 (page 204)
- XSLT 2.0 - 18.1.4 Testing Availability of Types
- xs:boolean type-available(type-name)

unordered - Sequence operator and functions (page 329)
- XPath 2.0 - 15.1 General Functions and Operators on Sequences
- item()* unordered(item()*)

unparsed-entity-public-id - Unparsed entity referencing in XSLT (page 258)
- XSLT 2.0 - 16.6.3 unparsed-entity-public-id
- xs:string unparsed-entity-public-id(entity-name)

unparsed-entity-uri - Unparsed entity referencing in XSLT (page 258)
- XSLT 2.0 - 16.6.2 unparsed-entity-uri
- xs:anyURI unparsed-entity-uri(entity-name)

unparsed-text - Document referencing in XSLT (page 269)
- XSLT 2.0 - 16.2 Reading Text Files
- xs:string? unparsed-text(href)

xs:string? unparsed-text(href, encoding)

Page 511 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Declaring a template to be invoked in an XSLT instruction:
- constructs nodes or sequences when matched or when called from an

<xsl:call-template> :
01 <xsl:template name=" template-qname" as=" result-data-type"
02 match=" XPath-pattern" mode=" mode-qname"
03 priority=" numeric-priority">
04 optional <xsl:param> parameterized variable declarations
05 optional template content
06 optional <xsl:variable> variable declarations
07 optional template content
08 optional <xsl:sequence> selection using XPath
09 </xsl:template>

 Processor ignores <xsl:with-param> if conditions are not met
- attempting to pass a binding value for a variable that isn't parameterized

- when declaring it in the template using <xsl:variable>
- attempting to pass a binding value for a variable that doesn't exist

- for built-in templates
- when omitted as an oversight by the stylesheet writer

 Processor reports <xsl:with-param> if conditions are not met
- passing a parameter that is not expected is reported as an error

 Processor validates resulting sequence against any specified as= data type
- compile-time checking and run-time execution

Page 237 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

unparsed-text-available - Document referencing in XSLT (page 269)
- XSLT 2.0 - 16.2 Reading Text Files
- xs:boolean unparsed-text-available(href)

xs:boolean unparsed-text-available(href, encoding)

upper-case - Calculating values using string functions (page 293)
- XPath 2.0 - 7.4 Functions on String Values
- xs:string upper-case(xs:string)

year-from-date - Date and time functions and operators (page 343)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer year-from-date(xs:date)

year-from-dateTime - Date and time functions and operators (page 342)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer year-from-dateTime(xs:dateTime)

years-from-duration - Date and time functions and operators (page 344)
- XPath 2.0 - 10.5 Component Extraction Functions on Durations, Dates and Times
- xs:integer years-from-duration(xs:duration)

zero-or-one - Sequence operator and functions (page 326)
- XPath 2.0 - 15.2 Functions That Test the Cardinality of Sequences
- item() zero-or-one(item()*)

Page 512 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Consider the following input file ntempsamp.xml :
01 <?xml version="1.0"?>
02 <course>
03 <title>The Course</title>
04 <module>
05 <title>The First Module</title>
06 <lesson><title>Lesson 1 of First Module</title></lesson>
07 <lesson><title>Lesson 1 of First Module</title></lesson>
08 </module>
09 <module>
10 <title>The Second Module</title>
11 <lesson><title>Lesson 1 of Second Module</title></lesson>
12 <lesson><title>Lesson 2 of Second Module</title></lesson>
13 </module>
14 </course>

Going over the data twice with the following output to be produced:
01 <result>
02 {The First Module - Lesson 1 of First Module - }
03 {The First Module - Lesson 1 of First Module - }
04 {The Second Module - Lesson 1 of Second Module - }
05 {The Second Module - Lesson 2 of Second Module - }
06 (The First Module - Lesson 1 of First Module - again! - The Course)
07 (The First Module - Lesson 1 of First Module - again! - The Course)
08 (The Second Module - Lesson 1 of Second Module - again! - The Course)
09 (The Second Module - Lesson 2 of Second Module - again! - The Course)
10 </result>

Page 238 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XPath 2.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

Expressions (3)
Expr [2] ::= [1] XPath

ExprSingle [3] ("," ExprSingle [3])* ::= [2] Expr
ForExpr [4]| QuantifiedExpr [6]| IfExpr [7]| OrExpr [8] ::= [3] ExprSingle

For Expressions (3.7)
SimpleForClause [5] "return" ExprSingle [3] ::= [4] ForExpr

"for" "$" VarName [45] "in" ExprSingle [3] ("," "$"
VarName[45] "in" ExprSingle [3])*

 ::= [5] SimpleForClause

Quantified Expressions (3.9)
("some" | "every") "$" VarName [45] "in" ExprSingle [3]
("," "$" VarName [45] "in" ExprSingle [3])* "satisfies"
ExprSingle [3]

 ::= [6] QuantifiedExpr

Conditional Expressions (3.8)
"if" "(" Expr [2] ")" "then" ExprSingle [3] "else" ExprSingle [3] ::= [7] IfExpr

Logical Expressions (3.6)
AndExpr [9] ("or" AndExpr [9])* ::= [8] OrExpr

ComparisonExpr [10] ("and" ComparisonExpr [10])* ::= [9] AndExpr

Comparison Expressions (3.5)
RangeExpr [11] ((ValueComp [23]| GeneralComp [22]|
NodeComp[24]) RangeExpr [11])?

 ::= [10] ComparisonExpr

Constructing Sequences (3.3.1)
AdditiveExpr [12] ("to" AdditiveExpr [12])? ::= [11] RangeExpr

Arithmetic Expressions (3.4)
MultiplicativeExpr [13] (("+" | "-")
MultiplicativeExpr [13])*

 ::= [12] AdditiveExpr

UnionExpr [14] (("*" | "div" | "idiv" | "mod")
UnionExpr [14])*

 ::= [13] MultiplicativeExpr

Combining Node Sequences (3.3.3)
IntersectExceptExpr [15] (("union" | "|")
IntersectExceptExpr [15])*

 ::= [14] UnionExpr

InstanceofExpr [16] (("intersect" | "except")
InstanceofExpr [16])*

 ::= [15] IntersectExceptExpr

Instance Of (3.10.1)
TreatExpr [17] ("instance" "of" SequenceType [50])? ::= [16] InstanceofExpr

Treat (3.10.5)
CastableExpr [18] ("treat" "as" SequenceType [50])? ::= [17] TreatExpr

Castable (3.10.3)
CastExpr [19] ("castable" "as" SingleType [49])? ::= [18] CastableExpr

Cast (3.10.2)
UnaryExpr [20] ("cast" "as" SingleType [49])? ::= [19] CastExpr

Arithmetic Expressions (3.4)
("-" | "+")* ValueExpr [21] ::= [20] UnaryExpr
PathExpr [25] ::= [21] ValueExpr

Page 513 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Named templates (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

The result is accomplished with the following stylesheet ntempsamp.xsl :
01 <?xml version="1.0"?><!--ntempsamp.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
04 version="1.0">
05

06 <xsl:output omit-xml-declaration="yes"/>
07

08 <xsl:template match="/"> <!-- root rule -->
09 <result><xsl:text>
</xsl:text>
10 <xsl:apply-templates select="//lesson"/>
11 <xsl:apply-templates select="//lesson" mode="second"/>
12 </result></xsl:template>
13

14 <xsl:template match="lesson"> <!--for each lesson first-->
15 <xsl:call-template name="lesson-title"/></xsl:template>
16

17 <xsl:template match="lesson" mode="second"> <!--second time-->
18 <xsl:call-template name="lesson-title">
19 <xsl:with-param name="start-delimiter" select="'('"/>
20 <xsl:with-param name="end-delimiter" select="')'"/>
21 <xsl:with-param name="suffix">
22 <xsl:text>again! - </xsl:text>
23 <xsl:value-of select="/course/title"/>
24 </xsl:with-param>
25 </xsl:call-template></xsl:template>
26

27 <xsl:template name="lesson-title"> <!--content for suffix-->
28 <xsl:param name="start-delimiter" select="'{'"/>
29 <xsl:param name="end-delimiter" select="'}'"/>
30 <xsl:param name="suffix"/>
31 <xsl:value-of select="$start-delimiter"/>
32 <xsl:value-of select="../title"/><xsl:text> - </xsl:text>
33 <xsl:value-of select="title"/><xsl:text> - </xsl:text>
34 <xsl:value-of select="$suffix"/>
35 <xsl:value-of select="$end-delimiter"/><xsl:text>
36 </xsl:text></xsl:template>
37

38 </xsl:stylesheet>

Page 239 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Comparison Expressions (3.5)
"=" | "!=" | "<" | "<=" | ">" | ">=" ::= [22] GeneralComp

"eq" | "ne" | "lt" | "le" | "gt" | "ge" ::= [23] ValueComp
"is" | "<<" | ">>" ::= [24] NodeComp

Path Expressions (3.2)
("/" RelativePathExpr [26]?)| ("//" RelativePathExpr [26])|
RelativePathExpr [26]

 ::= [25] PathExpr

StepExpr [27] (("/" | "//") StepExpr [27])* ::= [26] RelativePathExpr

Steps (3.2.1)
FilterExpr [38] | AxisStep [28] ::= [27] StepExpr
(ReverseStep [32] | ForwardStep [29]) PredicateList [39] ::= [28] AxisStep

(ForwardAxis [30] NodeTest [35]) | AbbrevForwardStep [31] ::= [29] ForwardStep

Axes (3.2.1.1)
("child" "::")| ("descendant" "::")| ("attribute" "::") |
("self" "::")| ("descendant-or-self" "::")|
("following-sibling" "::")| ("following" "::")|
("namespace" "::")

 ::= [30] ForwardAxis

Abbreviated Syntax (3.2.4)
"@"? NodeTest [35] ::= [31] AbbrevForwardStep

Steps (3.2.1)
(ReverseAxis [33] NodeTest [35]) | AbbrevReverseStep [34] ::= [32] ReverseStep

Axes (3.2.1.1)
("parent" "::")| ("ancestor" "::")| ("preceding-sibling"
"::")| ("preceding" "::")| ("ancestor-or-self" "::")

 ::= [33] ReverseAxis

Abbreviated Syntax (3.2.4)
".." ::= [34] AbbrevReverseStep

Node Tests (3.2.1.2)
KindTest [54] | NameTest [36] ::= [35] NodeTest
QName[78] | Wildcard [37] ::= [36] NameTest
"*"| (NCName [79] ":" "*")| ("*" ":" NCName [79]) ::= [37] Wildcard

Filter Expressions (3.3.2)
PrimaryExpr [41] PredicateList [39] ::= [38] FilterExpr

Steps (3.2.1)
Predicate [40]* ::= [39] PredicateList

Predicates (3.2.2)
"[" Expr [2] "]" ::= [40] Predicate

Primary Expressions (3.1)
Literal [42] | VarRef [44] | ParenthesizedExpr [46] |
ContextItemExpr [47] | FunctionCall [48]

 ::= [41] PrimaryExpr

Literals (3.1.1)
NumericLiteral [43] | StringLiteral [74] ::= [42] Literal

IntegerLiteral [71] | DecimalLiteral [72] |
DoubleLiteral [73]

 ::= [43] NumericLiteral

Variable References (3.1.2)
"$" VarName [45] ::= [44] VarRef

QName[78] ::= [45] VarName

Page 514 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

User-defined functions
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

 Declaring a function to be invoked in an XPath expression:
- returns nodes or sequences when called from an XPath expression:

01 <xsl:function name=" function-qname" as=" return-data-type"
02 override=" yes-or-no-default-yes">
03 optional <xsl:param> parameterized variable declarations
04 optional sequence content
05 optional <xsl:variable> variable declarations
06 optional sequence content
07 optional sequence constructor
08 optional <xsl:sequence> selection using XPath
09 </xsl:function>

A function's name must always be namespace qualified
- to be recognized as a user function in the XPath instruction

A function returns nodes and/or values per a sequence type using as= (see page 74)
- engages compile-time and run-time sequence checking

The arity of a function is the count of parameters defined
- there can be any number of functions with the same name but must have different arity
- the arity of the calling reference determines which function definition is invoked
- function parameters are all required and cannot have default values

The override= allows a user function to override an extension function
- the default is "yes " and ensures consistent behavior across processors
- "no" is useful to make the user function a fallback in a stylesheet running on different

processors that have different functions available
- when the extension function is available, the extension function is used
- when the function is not available as an extension, the user function is used

No current context defined for ". " or "/ " at invocation
- all XPath location path addresses are invalid until a context is set

- common to use <xsl:for-each> on a passed parameter to set the context
- typically one passes a context as a parameter and uses <xsl:for-each> to set the context

as being current, on which XPath location path addresses can be used

No access to tunnel parameters
- all parameters must be explicitly passed

Page 240 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Parenthesized Expressions (3.1.3)
"(" Expr [2]? ")" ::= [46] ParenthesizedExpr

Context Item Expression (3.1.4)
"." ::= [47] ContextItemExpr

Function Calls (3.1.5)
QName[78] "(" (ExprSingle [3] ("," ExprSingle [3])*)? ")" ::= [48] FunctionCall

Cast (3.10.2)
AtomicType [53] "?"? ::= [49] SingleType

SequenceType Syntax (2.5.3)
("empty-sequence" "(" ")")| (ItemType [52]
OccurrenceIndicator [51]?)

 ::= [50] SequenceType

"?" | "*" | "+" ::= [51] OccurrenceIndicator
KindTest [54] | ("item" "(" ")") | AtomicType [53] ::= [52] ItemType

QName[78] ::= [53] AtomicType
DocumentTest [56]| ElementTest [64]| AttributeTest [60]|
SchemaElementTest [66]| SchemaAttributeTest [62]| PITest [59]|
CommentTest [58]| TextTest [57]| AnyKindTest [55]

 ::= [54] KindTest

"node" "(" ")" ::= [55] AnyKindTest
"document-node" "(" (ElementTest [64] |
SchemaElementTest [66])? ")"

 ::= [56] DocumentTest

"text" "(" ")" ::= [57] TextTest
"comment" "(" ")" ::= [58] CommentTest

"processing-instruction" "(" (NCName[79] | StringLiteral [74])?
")"

 ::= [59] PITest

"attribute" "(" (AttribNameOrWildcard [61] (","
TypeName[70])?)? ")"

 ::= [60] AttributeTest

AttributeName [68] | "*" ::= [61] AttribNameOrWildcard
"schema-attribute" "(" AttributeDeclaration [63]
")"

 ::= [62] SchemaAttributeTest

AttributeName [68] ::= [63] AttributeDeclaration
"element" "(" (ElementNameOrWildcard [65] ("," TypeName[70]
"?"?)?)? ")"

 ::= [64] ElementTest

ElementName [69] | "*" ::= [65] ElementNameOrWildcard
"schema-element" "(" ElementDeclaration [67] ")" ::= [66] SchemaElementTest

ElementName [69] ::= [67] ElementDeclaration
QName[78] ::= [68] AttributeName

QName[78] ::= [69] ElementName
QName[78] ::= [70] TypeName

Literals (3.1.1)
Digits [81] ::= [71] IntegerLiteral
("." Digits [81]) | (Digits [81] "." [0-9]*) ::= [72] DecimalLiteral

(("." Digits [81]) | (Digits [81] ("." [0-9]*)?)) [eE]
[+-]? Digits [81]

 ::= [73] DoubleLiteral

('"' (EscapeQuot [75] | [^"])* '"') | ("'"
(EscapeApos [76] | [^'])* "'")

 ::= [74] StringLiteral

'""' ::= [75] EscapeQuot
"''" ::= [76] EscapeApos

Comments (2.6)
"(:" (CommentContents [82] | Comment [77])* ":)" ::= [77] Comment

Page 515 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

User-defined functions (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

Note the equivalence of the following four invocations, two being a called template and the
other two being function calls, alternately using XSLT and XPath to return values

- there is no constraint on template thing1 , thus the result is concatenated values
01 Call: <xsl:call-template name="thing1">
02 <xsl:with-param name="p" select="'test'"/>
03 </xsl:call-template>
04 Call: <xsl:call-template name="thing2">
05 <xsl:with-param name="p" select="'test'"/>
06 </xsl:call-template>
07 Func: <xsl:copy-of select="my:thing3('test')"/>
08 Func: <xsl:copy-of select="my:thing4('test')"/>
09

10 <xsl:template name="thing1">
11 <xsl:param name="p"/>
12 <xsl:value-of select="$p"/> <xsl:sequence select="$p"/>
13 </xsl:template>
14 <xsl:template name="thing2" as="xs:string+">
15 <xsl:param name="p"/>
16 <xsl:value-of select="$p"/><xsl:sequence select="$p"/>
17 </xsl:template>
18 <xsl:function name="my:thing3" as="xs:string+">
19 <xsl:param name="p"/>
20 <xsl:sequence select="$p,$p"/>
21 </xsl:function>
22 <xsl:function name="my:thing4" as="xs:string+">
23 <xsl:param name="p"/>
24 <xsl:for-each select="$p">
25 <xsl:value-of select="."/><xsl:value-of select="."/>
26 </xsl:for-each>
27 </xsl:function>

The end result is as follows:
- Call: testtest

 Call: test test
 Func: test test
 Func: test test

Note the impact of the return data type as="xs:string+" in the template named "thing ":
- "xs:string+ " specifies a sequence of strings
- if the as= attribute were omitted, the result would be "testtest "

Note in my:thing3 that ". " is undefined until <xsl:for-each> sets the context
- this would be true for any other location path relying on nodes
- very common to pass a document context in a parameter and use <xsl:for-each> to

set the context for the algorithm of the function

Page 241 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Terminal Symbols (1.2.1)
[http://www.w3.org/TR/REC-xml-names/#NT-QName] [XML-
Names-7]

 ::= [78] QName

[http://www.w3.org/TR/REC-xml-names/#NT-NCName] [XML-
Names-4]

 ::= [79] NCName

[http://www.w3.org/TR/REC-xml#NT-Char] [XML-
2]

 ::= [80] Char

Literals (3.1.1)
[0-9]+ ::= [81] Digits

Comments (2.6)
(Char [80]+ - (Char* ('(:' | ':)') Char*)) ::= [82] CommentContents

Page 516 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Explicit loop repetition
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

It is often a requirement to loop a specified number of times to build the result tree
- cannot use an <xsl:for-each> because the number of loops is based on the count of

nodes triggered by the select=
- a template calls itself recursively for the number of additions required to the result

tree
- may require the processor to implement "tail recursion" to avoid the recursive

calls exceeding the available stack space
- tail recursion can only be exploited if there are no components targeted

for the result tree after the recursive call in the template
- each call indicates one fewer repeats are required

- simple use of the "to " operator
- the expression "1 to $count " returns a sequence of integers inclusive of both

operands of the operator
- <xsl:for-each> will accept a sequence in the select= attribute

- note that when the context item is an atomic value, there is no definition of
"/ ", nor can any node be addressed without using a variable or function

01 <xsl:text>Dan: "Say goodnight, Dick."&nl;</xsl:text>
02 <xsl:for-each select="1 to $count">
03 <xsl:text>Dick: "Goodnight Dick!"&nl;</xsl:text>
04 </xsl:for-each>

Page 242 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLT 2.0 grammar productions
Annex C - Instruction, function and grammar summaries
Section 2 - Vocabulary, functions and grammars XSLT 2.0 and XPath 2.0

PathPattern [2]
| Pattern [1] '|' PathPattern [2]

 ::= [1] Pattern

RelativePathPattern [3]
| '/' RelativePathPattern [3]?
| '//' RelativePathPattern [3]
| IdKeyPattern [6] (('/' | '//') RelativePathPattern [3])?

 ::= [2] PathPattern

PatternStep [4] (('/' | '//')
RelativePathPattern [3])?

 ::= [3] RelativePathPattern

PatternAxis [5]? NodeTest [XPath-35] PredicateList [XPath-
39]

 ::= [4] PatternStep

('child' '::' | 'attribute' '::' | '@') ::= [5] PatternAxis
'id' '(' IdValue [7] ')'
| 'key' '(' StringLiteral [XPath-74] ',' KeyValue [8] ')'

 ::= [6] IdKeyPattern

StringLiteral [XPath-74] | VarRef [XPath-44] ::= [7] IdValue
Literal [XPath-42] | VarRef [XPath-44] ::= [8] KeyValue

Page 517 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Explicit loop repetition (cont.)
Chapter 6 - Transform and data management
Section 1 - Modularizing the logical structure of transforms

The countdown template rule in the following example is a generic template useful for repetitive
copying of any content when invoked
01 <?xml version="1.0"?><!--loop.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">]>
04

05 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
06 version="1.0">
07 <xsl:output method="text"/>
08

09 <xsl:param name="count" select="3"/> <!--allow override-->
10

11 <xsl:template match="/">
12 <xsl:text>Dan: "Say goodnight, Dick."&nl;</xsl:text>
13 <xsl:call-template name="countdown"> <!--begin countdown-->
14 <!--convert to number in case supplied as string-->
15 <xsl:with-param name="counter" select="number($count)"/>
16 <xsl:with-param name="content"> <!--what is to be copied-->
17 <xsl:text>Dick: "Goodnight Dick!"&nl;</xsl:text>
18 </xsl:with-param>
19 </xsl:call-template>
20 </xsl:template>
21

22 <xsl:template name="countdown"> <!--recursive loop until done-->
23 <xsl:param name="content"/> <!--structure to be copied-->
24 <xsl:param name="counter" select="0"/> <!--remaining reps-->
25 <xsl:if test="$counter > 0"> <!--count not zero; more work-->
26 <xsl:copy-of select="$content"/>
27 <xsl:call-template name="countdown"> <!--next; one less-->
28 <xsl:with-param name="counter" select="$counter - 1"/>
29 <xsl:with-param name="content" select="$content"/>
30 </xsl:call-template>
31 </xsl:if>
32 </xsl:template>
33

34 </xsl:stylesheet>

Page 243 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Annex D - Tool questions

- Introduction - Sample questions for vendors
- Section 1 - XSLStyle™

Page 518 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

External parsed general entities in XML files
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

An XML external parsed general entity:
- is a stand-alone XML stream of data suitable for referencing from within another XML

entity
- see figure in Extensible Markup Language (XML) (page 9) for an illustration
- by XML 1.0 rules (section 4.3.2) the content of the entity must be well formed
- the reference is resolved by the XML processor within the XSLT processor

- can contain any stylesheet fragment residing outside of the stylesheet that invokes it
- the entity could represent a portion of or an entire template
- the entity might be synthesized by some pre-process that is used to parameterize

the behavior of the stylesheet or the nature of the result markup
- supports management of very large XML files

- breaking the entire work into manageable fragments
- is a syntactic fragmentation method

- not designed for stylesheet fragment re-use between different stylesheets
- see <xsl:import> and <xsl:include> for semantic stylesheet fragment re-use

All boundaries of external parsed general entities are lost
- the XSLT processor cannot distinguish between markup having been found in the main

stylesheet entity from markup having been found in an entity outside the main stylesheet
entity

- any stylesheet nodes created from the external parsed general entity are added to the
stylesheet node tree as if found within the main stylesheet entity itself

Suitable for source files
- users can create data files with any level of such fragmentation
- no change to the stylesheet when changing the fragmentation of a source file

Possible but not suitable for XSLT stylesheets
- stylesheets are XML files but the language design provides better facilities than entities

Page 244 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sample questions for vendors
Annex D - Tool questions

Answers to the following questions may prove useful when trying to better understand a
product offering from a vendor. The specific questions are grouped under topical questions.
This by no means makes up a complete list of questions as you may have your own criteria
to add, nonetheless, they do cover aspects of XSLT and XQuery that may impact on the
stylesheets and transformation specifications you write.

- how is the product identified?
- what is the name of the processor in product literature?
- what value is returned by the system properties?

- recall Communication facilities in XSLT (page 207)
- what version of specification is supported?

- returned by the xsl:version system property in XSLT
- to which email address or URL are questions forwarded for more information in

general?
- to which email address or URL are questions forwarded for more information

specific to the answers to these technical questions?
- what output serialization methods are supported for the result node tree?

- XML?
- HTML?
- text?
- XHTML?
- XSL formatting and flow objects?

- in what ways are the formatting objects interpreted (direct to screen? HTML?
PostScript? PDF? TeX? etc.)?

- other non-XML text-oriented methods different than the standard text method (e.g.
NXML by XT)?

- what are the semantics and vocabulary for each such environment?
- other custom serialization methods?

- what are the semantics and vocabulary for each such environment?
- what customization is available to implement one's own interpretation of result tree

semantics?
- is there access to the result tree as either a DOM tree or SAX events?
- does such access still oblige serialization to an external file?

Page 519 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Included stylesheets
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Semantic inclusion of stylesheets:
- <xsl:include href=" uniform-resource-identifier"/>
- wholly incorporating another stylesheet

- the external file itself is a complete XSLT stylesheet with requisite declarations
- the external XSLT stylesheet may have its own internal declaration subset

- an internal subset cannot be used in an external file when that file is included
as an external general entity

- the internal subset used in the included file may have own general entities
- included stylesheet nodes added to the stylesheet tree in situ

- any stylesheet nodes created from the included file are added to the stylesheet node
tree as if found within the stylesheet itself at the point of inclusion

- no special accommodation of template conflicts
- no distinction of included constructs from those in the main stylesheet entity
- location of inclusion important for error recovery during template conflict resolution

Important role when managing large stylesheets as multiple pieces
- all included fragments are dealt with same level of import precedence

- one can have multiple template rules accommodating the same node with different
levels of priority in different included stylesheet fragments because all included
fragments have the same level of import precedence

No polymorphism of global constructs
- duplicate declarations are in conflict and are reported as errors

Page 245 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.)
Annex D - Tool questions

- how does the processor differ from the W3C working drafts or recommendations?
- upon which dated W3C documents describing the specifications is the software

based?
- which constructs or functions are not implemented at all?
- which constructs or functions are implemented differently than in the W3C

description?
- what namespace URI values are used for those available constructs or functions

described differently or not described in W3C version?
- is the W3C recommended stylesheet association technique implemented for the

direct processing XML instances?
- if so, can it be selectively engaged and disengaged?

- are any extension functions or extension elements implemented?
- what is the recognized extension namespace and the utility of the extension functions

and elements implemented?
- is there an extension function for the conversion of a result tree fragment to

a node-set?
- are there any built-in extension functions or extension elements for the

writing of templates to an output URL?
- can additional extension functions or extension elements (beyond those supplied

by the vendor) be added by the user?
- how so?

- are any extensions defined by exslt.org supported?

Page 520 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Imported stylesheets
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Semantic importation of stylesheets:
- <xsl:import href=" uniform-resource-identifier"/>
- partially incorporating another stylesheet

- the external file itself is a complete XSLT stylesheet with requisite declarations
- the internal subset used in the included file may have own general entities

- constructs in importing stylesheet override constructs in imported stylesheet
- duplicate declarations are not in conflict

- importation and order defines "importance" for template conflict resolution
- stylesheet constructs in the imported file are considered less important

- less important than any corresponding constructs in the importing stylesheet
- thus are not available to be used when there are identically-identified

constructs found in the importing stylesheet
- corollary: importing stylesheet constructs are more important than imported

constructs
- chosen before (without being considered a conflict) any

identically-identified constructs found in an imported stylesheet
- order increases in importance for multiple importation

- when more than one file is being imported, former importation confers less
importance than latter importation

- corollary: latter imported stylesheet constructs from a given importing
file are considered more important

- chosen before (without being considered a conflict) any
identically-identified constructs found in former imported
stylesheets

- importance is transitive
- all stylesheet constructs from latter imported stylesheets (including

those that may be imported into the imported stylesheet) are more
important than constructs from prior imported stylesheets

Ideal for tweaking large working stylesheets
- e.g. a new stylesheet needs 95% of an existing stylesheet

- only 5% written as overriding constructs more important than found in the imported
stylesheet

- an acceptable method for encapsulating semantic validation algorithms for re-use by
multiple stylesheets

Conference paper regarding using a large import tree in a production system
- see the "Global large-scale stylesheet deployment case study" link from the Crane

Softwrights Ltd. home page under "Recommended reading"

Page 246 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.)
Annex D - Tool questions

- how are particular facilities implemented?
- what is the implementation in the processor of indent="yes" for <xsl:output> ?
- is a method provided for defining top-level <xsl:param> constructs at invocation

time?
- how is the <xsl:message> construct implemented?
- which UCS/Unicode format tokens are supported for <xsl:number> ?
- which lang= values are supported for <xsl:sort> ?
- what is the URI syntax for data projection for input?
- which collations are supported for string comparison?
- is the processor schema-aware?
- what are the details of the collection URI syntax?

- how are errors reported or gracefully handled?
- regarding template conflict resolution?
- regarding improper content of result tree nodes (e.g. comments, processing

instructions)?
- regarding invocation of unimplemented functions or features?
- regarding any other areas?
- can fatal error reporting (e.g. template conflict resolution or other errors) be

selectively turned on to diagnose stylesheets targeted for use with other XSLT
processors that fail on an error?

Page 521 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Imported stylesheets (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Importation that supplants imported behaviors:

Imported

A

B'

G'
 I

E
D
 F

K

M

L

J

N

P
 Q

W
 Y'
X

T
 U'

S
R

O

early result tree
source tree
 XSLT stylesheets

1

2

2
 3

3
3
 4

3
 6

5

3
 6

3
 2
3

3
 2

3

6:

J
5:

F
4:

3:

2:

A
1:

A

B'
 E
D
 F

A

B'

G'
 I

E
D
 F

K

M

L

J

N

P
 Q

S
R

O

final result tree

Legend:

 - source tree is labeled by type

 - result tree (in three

 snapshots) is labeled by

 result parse order

Importing

2':

- the nodes that are pushed to the outer importing stylesheet are intercepted by template
rules

- those nodes not intercepted by the importing stylesheet are handled by the imported
template rules

Recall the basic behavior of template rules on page 23

Page 247 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Sample questions for vendors (cont.)
Annex D - Tool questions

- what are the details of the implementation and invocation of the processor?
- how are user values passed in to the transformation?
- which hardware/operating system platforms support the processor?
- which character sets are supported for the input file encoding and output

serialization?
- what is the XML processor used within the XSLT processor?

- does the XML processor support minimally declared internal declaration
subsets with only attribute list declarations of ID -typed attributes?

- does the XML processor support XML Inclusions (Xinclude)?
- does the XML processor support catalogues for public identifiers?
- does the XML processor validate the source file?

- can this be turned on and off?
- can the processor be embedded in other applications?

- can the processor be configured as a servlet in a web server?
- is there access to the result tree as either a DOM tree or SAX events?

- is the source code of the processor available?
- in what language is the processor written?

- for Windows-based environments:
- can the processor be invoked from the MSDOS command-line box?
- can the processor be invoked from a GUI interface?
- what other methods of invocation can be triggered (DLL, RPC, etc.)?
- can error messages be explicitly redirected to a file using an invocation

parameter (since, for example, Windows-95 does not allow for redirection of
the standard error port to a file)?

- does the processor take advantage of parallelism when executing the stylesheet, or
is the stylesheet always processed serially?

- does the processor implement tail recursion for called named templates?
- does the processor implement lazy evaluation for XPath location path expression

evaluation?

Page 522 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Imported stylesheets (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

An illustration of the transitive nature of importation is as follows:

file.xsl

<xsl:stylesheet>

</xsl:stylesheet>

<xsl:import href="file1.xsl">

file1.xsl

<xsl:import href="file2.xsl">

<xsl:stylesheet>

</xsl:stylesheet>

<xsl:import href="file1a.xsl">

file1a.xsl

<xsl:stylesheet>

</xsl:stylesheet>

file2.xsl

<xsl:stylesheet>

</xsl:stylesheet>

<xsl:import href="file2a.xsl">

file2a.xsl

<xsl:stylesheet>

</xsl:stylesheet>

The order of importance of these files in which a given construct is found is:
1 file.xsl
2 file2.xsl
3 file2a.xsl
4 file1.xsl
5 file1a.xsl

Note that the above order is exactly the reverse order of parsing the imported files when parsed
at the point they are declared, and since all imported files are declared in a stylesheet before
any other stylesheet content, this makes it straightforward for implementers to simply override
a given construct's definition with a subsequent definition in parse order.

Page 248 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLStyle™
Annex D - Tool questions
Section 1 - XSLStyle™

An XSLT stylesheet embedded documentation methodology
- an XSLT stylesheet is an XML document
- one can embed a documentation vocabulary in an XSLT stylesheet through standard

XML namespace techniques
- a stylesheet for stylesheets renders the embedded documentation to HTML and CSS
- freely downloadable environment from the Crane Softwrights Ltd. web site as a developer

resource

Can invoke as a separate stylesheet or through embedded association
- see http://www.w3.org/TR/xml-stylesheet/
- recall Stylesheet association (page 34)

Embedded documentation uses a Crane namespace for structure
- DocBook for content

- see http://www.docbook.org/ for details
- DITA for content

- see http://dita.xml.org/ for details
- XHTML for content

Page 523 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Imported stylesheets (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Important caveat when managing large stylesheets as multiple pieces
- importance trumps priority

- one cannot have multiple template rules accommodating the same node with
different levels of priority in different imported stylesheet fragments because the
priorities of the fragment with the highest importance that matches the node will
satisfy the need without looking for higher priority template rules in fragments of
lesser importance

Other importation requirements:
- all imported stylesheets must be declared at the start of the importing stylesheet

- before any other construct is declared
- imported stylesheets from included stylesheets are imported after imported stylesheets

of the including stylesheet
- all included stylesheets are examined in order, looking for imported stylesheets

Page 249 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLStyle™ (cont.)
Annex D - Tool questions
Section 1 - XSLStyle™

Enforces "stylesheet writing rules" on the writer of the stylesheet
- adds rigor to the stylesheet
- e.g. all top-level constructs must be separately documented
- e.g. all parameters of all templates and functions must be separately documented
- e.g. all parameters of all templates and functions must have declared types
- e.g. all named top-level constructs must be namespace qualified
- many other rules

Resulting HTML report is similar to an enhanced Javadoc report
- encompasses the complete import tree
- alphabetized index of all named top-level constructs
- deficiencies report

- fully hyperlinked content
- one could institute a development rule of not allowing the check-in of a stylesheet

until the library is fully documented according to the writing rules

Page 524 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Imported stylesheets (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Overriding the template match's importance:
- <xsl:apply-imports/>

- useful to supplement existing processing available from imported stylesheets
- no attributes can be specified
- no child elements can be specified
- child <xsl:param> elements can be specified
- acts a lot like <xsl:apply-templates select="." mode=" mode-qname"> but

not quite:
- does not respect any template rules in the importing stylesheet, only the

imported stylesheets
- does not change the XPath context as would the instruction above

- reapplies the last matched node as if the importing stylesheet didn't exist
- only uses the template rules of the imported stylesheets of the template rule's

stylesheet fragment
- cannot be called within the context of <xsl:for-each>

 Overriding the template match's importance and priority:
- <xsl:next-match/>

- useful to supplement existing processing available from all stylesheets in the import
tree

- reapplies the last matched node as if the matched template didn't exist
- whichever template matched the last-matched node is removed from the set of

templates in play
- each template that matches and uses another <xsl:next-match> is also removed

from the set of templates in play
- cannot be called within the context of <xsl:for-each>

Page 250 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLStyle™ (cont.)
Annex D - Tool questions
Section 1 - XSLStyle™

An example fragment:
01 <?xml-stylesheet type="text/xsl" href="xslstyle-docbook.xsl"?>
02 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
03 xmlns:xs="http://www.CraneSoftwrights.com/ns/xslstyle"
04 xmlns:i="internal-namespace"
05 exclude-result-prefixes="xs i"
06 version="1.0">
07

08 <!--an example import-->
09 <xsl:import href="docbookex1.xsl"/>
10 <!--another example import-->
11 <xsl:import href="docbookex2.xsl"/>
12

13 <xs:doc info="$Id: ex.xsl,v 1.1 2007/09/16 23:32:01 G. Ken Holman Exp
$"
14 filename="ex.xsl" global-ns="xs" internal-ns="i" vocabulary="DocBook">
15 <xs:title>XSLStyle™ illustration for the DocBook
vocabulary</xs:title>
16 <para>
17 XSLStyle™ implements a methodology for styling stylesheets
18 using a documentation vocabulary into formatted documentation and
19 rigourous completeness reports.
20 </para>
21 <programlisting>
22 Copyright (C) - Crane Softwrights Ltd.
23 ...
24 <xs:template>
25 <para>The formatting of a single entry in the import tree.</para>
26 <xs:param name="href">
27 <para>The URI used to access the module for this entry.</para>
28 </xs:param>
29 </xs:template>
30 <xsl:template name="i:format-tree-entry">
31 <xsl:param name="href"/>
32 <listitem>
33 ...

Page 525 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Imported stylesheets (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Importation that augments imported behaviors:

Imported

A

B'

G'
 I

E
D
 F

K

M

L

J

N

P
 Q

W
 Y'
X

T
 U'

S
R

O

early result tree
source tree
 XSLT stylesheets

1

2

2
 3

3
3
 4

3
 6

5

3
 6

3
 2
3

3
 2

3

6:

J
5:

F
4:

3:

2:

A
1:

A

B'
 E
D
 F

A

B'

G'
 I

E
D
 F

K

M

L

J

N

P
 Q

S
R

O

final result tree

Legend:

 - source tree is labeled by type

 - result tree (in three

 snapshots) is labeled by

 result parse order

Importing

2':

B

C

B

C
 G

H

B

C
 G

H

U

V

Y

Z

- the nodes that are pushed to the outer importing stylesheet are intercepted by template
rules

- those nodes not intercepted by the importing stylesheet are handled by the imported
template rules

- the handling of the importing stylesheet template rule engages the corresponding template
rule of the imported stylesheet

Recall the basic behavior of template rules on page 23

Recall the importation behavior that supplants imported stylesheets on page 247

Page 251 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

XSLStyle™ (cont.)
Annex D - Tool questions
Section 1 - XSLStyle™

Page 526 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Imported stylesheets (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Overriding reprocesses last-matched node
- the context item is not changed
- the current list is not changed
- the mode is not changed

Overriding cannot be triggered in certain instructions
- these instructions cannot be used within the following instructions

- <xsl:for-each>
- <xsl:for-each-group>
- <xsl:analyze-string>
- <xsl:sort>
- <xsl:key>

 Parameters can be passed when overriding:
01 <xsl:apply-imports>
02 optional <xsl:with-param> parameter binding values
03 </xsl:apply-imports>
04

05 <xsl:next-match>
06 optional <xsl:with-param> parameter binding values
07 </xsl:next-match>

Page 252 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Where to go from here?
Conclusion - Practical Transformation Using XSLT and XPath

The work on XSL, XQuery, XSLT and XPath continues:
- all are full W3C Recommendations undergoing designs for new features
- long list of future feature considerations already being examined for new releases of the

technology
- new products are continually being announced
- feedback is necessary from users like you!

- use the XSL mail lists to contribute:
- http://www.mulberrytech.com/xsl/xsl-list/
- http://groups.yahoo.com/group/XSL-FO
- http://lists.w3.org/Archives/Public/www-xsl-fo/

- contact the W3C with comments about the XSLT/XPath/XQuery specifications:
- http://www.w3.org/XML/2005/04/qt-bugzilla
- mailto:public-qt-comments@w3.org

Page 527 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extension mechanisms
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

XSLT is extensible in design:
- a transformation can reference functions and instructions not defined by the W3C
- some extension techniques offer fallback definition

- user-defined actions of what to do when the extension is unavailable
- specified techniques for use

- how to declare an extension
- how to invoke an extension
- how to accommodate a processor that hasn't implemented an extension

- no specified techniques for implementation

Important portability issue
- a processor is not required to support any extension at all
- a transform that must be portable across different engine implementations cannot rely

on the implementation of extensions mechanisms

Page 253 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Colophon
Conclusion - Practical Transformation Using XSLT and XPath

These materials were produced using structured information technologies as follows:
- authored source materials

- content in numerous XML files maintained as external general entities for a complete
prose book that can be made into a subset for training

- specification of applicability of constructs for each configuration
- 45- and 90-minute lecture, half-, full-, two- and three-day lecture and

hands-on instruction, and book (prose) configurations
- an XSLT transformation creates the subset of effective constructs from

applying applicability to the complete file
- content from other presentations/tutorials included semantically (not

syntactically) during construct assembly
- customized appearance engaged with marked sections and both parameter and

general entities
- different host company logos and venue and date marginalia
- changing a single external parameter entity to a key file includes suite of files

for given appearance
- accessible rendition in HTML

- an XSLT stylesheet produces a collection of HTML files using Saxon for multiple
file output

- mono-spaced fonts and list-depth notation conventions assist the comprehension
of the material when using screen-reader software

- printed handout deliverables
- an XSLT stylesheet produces an instance of XSL formatting objects (XSL-FO) for

rendering
- XPDF http://www.foolabs.com/xpdf extracts raw text from PDF files for the

back-of-the-book index methodology published as a free resource by Crane
Softwrights Ltd.

- XEP by RenderX http://www.renderx.com produces PostScript from XSL-FO
- GhostScript http://www.GhostScript.com produces PDF from PostScript
- the iText http://itext.sf.net PDF manipulation library for Java is used for

page imposition by a custom Python http://www.python.org program running
under the Jython http://www.jython.org environment

Page 528 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extension mechanisms (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Extension functions

Expression evaluated by a custom implementation within the processor:
- called by referencing their namespace-qualified names, optionally providing parameters

to be used by the function
- functions are distinguished by their arity (the number of arguments)

- xmlns: function-namespace-prefix=" processor-recognized-URI"
- function-available(' function-namespace-prefix: function-name')
- function-available(' function-namespace-prefix: function-name',

arity)
- built-in function to determine if the given function is available to be called

- when passing a numeric value for the arity, determines that a function with
the specified number of arguments is available to be called

- while typically used for extension functions, note that this function can also be
used to test the availability of a built-in function defined in the recommendations
or a user function:

- function-available(' standard-function-name')
- function-available(' user-function-name')

- returns false if function not implemented or available
- must be available in the function library context of built-in functions,

user-defined functions and extension functions
- function-namespace-prefix: function-name()
- function-namespace-prefix: function-name(function-arguments)
- no fallback available

- an error is signaled when trying to execute an unimplemented function
- an error is signaled when trying to reference an unimplemented function

 Protecting a stylesheet from referencing an unimplemented function:
01 <xsl:value-of select="t:abc()"
02 use-when="function-available('t:abc')"/>

Page 254 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Obtaining a copy of the comprehensive tutorial
Conclusion - Practical Transformation Using XSLT and XPath

This comprehensive tutorial on XSLT and XPath is available for subscription purchase and
free preview download:

- "Practical Transformation Using XSLT and XPath (XSL Transformations and the XML
Path Language)" Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

- the free download preview excerpt of the publication indicates the number of pages
for each topic

- the cost of purchase includes all future updates to the materials with email notification
- the materials are updated after new releases of the W3C specifications
- the materials are updated after incorporating comments gleaned during presentations

and from feedback from customers
- available in PDF

- formatted as 1-up or 2-up book pages per imaged page
- dimensions in either US-letter or A4 page sizes
- available as either single sided or double sided

- accessible rendition available for use with screen readers
- free preview download includes full text of first two chapters and two useful annexes
- site-wide and world-wide staff licenses (one-time fee) are available

See http://www.CraneSoftwrights.com/links/trn-20110211.htm for more details.

Feedback
- the unorthodox style has been well-accepted by customers as an efficient learning

presentation
- feedback from customers is important to improve or repair the content for future editions
- please send suggestions or comments (positive or negative) to

info@CraneSoftwrights.com

US Government employee purchase
- US Government employees (not contractors) are entitled to obtain their personal prepaid

copies at no charge from a government intranet location
- visit the Crane web site for details

Page 529 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extension mechanisms (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Extension instruction elements

Instruction evaluated by a custom implementation in an XSLT processor:
- executed by an element with a namespace-qualified element type name

- may have attributes that may or may not allow attribute value templates
- considered as instructions and are not considered the same as literal result elements
- not allowed as top-level elements

- can only be used as instructions within templates
- xmlns: instruction-namespace-prefix=" processor-recognized-URI"
- xsl:extension-element-prefixes=" white-space-separated-prefixes"

- an ancestral element in the stylesheet must declare the namespace prefix
- if not declared, stylesheet node is regarded as representing a literal result

element
- #default is used to specify the default namespace as an extension element

namespace
- element-available(' prefix: element-type')

- built-in function to determine if a given element type is an instruction
- note that this function can also be used to test the availability of an XSLT element

defined in the recommendation, not just an extension element
- element-available(XSLT-prefix: element-type)

- returns false if instruction not implemented or available
- <instruction-namespace-prefix: instruction-name optional-attrs>

optional-instruction-content-and-fallback
</ instruction-namespace-prefix: instruction-name>

Page 255 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Practical Transformation
Using XSLT and XPath

(XSL Transformations and
the XML Path Language)

Crane Softwrights Ltd.
http://www.CraneSoftwrights.com

Page 530 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Extension mechanisms (cont.)
Chapter 6 - Transform and data management
Section 2 - Modularizing the physical structure of transforms

Accommodating unimplemented extension instruction elements:
- invocation instantiates <xsl:fallback> stylesheet templates in the result tree if

instruction not implemented or available
- immediate child or multiple immediate children of either an XSLT element or an

extension element in the stylesheet
- other descendent fallback templates are not added to the result tree

- used only when the processor doesn't implement the instruction element
- ignored when the processor does implement the instruction element
- all fallback element templates instantiated in order when instruction element

executed
- an error is signaled if there are no fallback child elements when trying to execute

an unimplemented instruction element
- useful technique for engaging a comment-like construct around template constructs

- in XML one cannot use a comment construct around an existing comment construct
- the combination of an ignored extension element and an empty <xsl:fallback>

constitutes no activity
- consider a block of XSLT functionality as follows:

- 01 <xsl:for-each select="a">
02 <!--create the A result-->AAA
03 </xsl:for-each>
04 <xsl:for-each select="b">
05 <!--create the B result-->BBB
06 </xsl:for-each>
07 <xsl:for-each select="c">
08 <!--create the C result-->CCC
09 </xsl:for-each>

- to "comment out" the middle construct, one cannot use a comment but one
could use an unimplemented extension instruction with a fallback

- 01 <xsl:for-each select="a">
02 <!--create the A result-->AAA
03 </xsl:for-each>
04 <my:ignore xmlns:my="my-ns"
05 xsl:extension-element-prefixes="my">
06 <xsl:fallback/>
07 <xsl:for-each select="b">
08 <!--create the B result-->BBB
09 </xsl:for-each>
10 </my:ignore>
11 <xsl:for-each select="c">
12 <!--create the C result-->CCC
13 </xsl:for-each>

Page 256 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath
Table of contents
Indexed by slide number

001 [Prelude] Practical Transformation Using XSLT and XPath (Prelude) (002)

003 Practical Transformation Using XSLT and XPath
004 [Introduction -1-1] Transforming structured information (005)

006 [1] The context of XSLT and XPath
007 [Introduction 1-1-1] Overview
008 [1-1-1-1] Extensible Markup Language (XML) (009) (010) (011) (012) (013) (014) (015)

016 [1-1-2-1] XML information links
017 [1-1-3-1] XML Path Language (XPath) (018)

019 [1-1-4-1] Styling structured information
020 [1-1-5-1] Extensible Stylesheet Language (XSL/XSL-FO)
021 [1-1-6-1] Extensible Stylesheet Language Transformations (XSLT) (022) (023)

024 [1-1-7-1] XSLT properties (025) (026)

027 [1-1-8-1] Historical development of the XSL and XQuery Recommendations
028 [1-1-9-1] XSL information links
029 [1-1-10-1] Namespaces (030) (031) (032) (033)

034 [1-1-11-1] Stylesheet association
035 [1-2-1-1] Transformation from XML to XML
036 [1-2-2-1] Transformation from XML to non-XML (037) (038)

039 [1-2-3-1] Transforming and rendering XML information using XSLT and XSL-FO
040 [1-2-4-1] XML to binary or other formats (041)

042 [1-2-5-1] XSLT as an application front-end
043 [1-2-6-1] Three-tiered architectures (044)

045 [1-2-7-1] XSLT and XQuery on the wire
046 [2] Getting started with XSLT and XPath
047 [Introduction 2-1-1] Getting started
048 [2-1-1-1] Some simple examples (049) (050) (051) (052)

053 [2-2-1-1] XSLT stylesheet requirements
054 [2-2-2-1] XSLT instructions and literal result elements
055 [2-2-3-1] XSLT templates and template rules
056 [2-2-4-1] XSLT stylesheet components
057 [2-3-1-1] Pull and push constructs (058) (059) (060) (061)

062 [2-4-1-1] Processing XML with many transforms (063) (064) (065) (066) (067) (068) (069)

070 [3] XPath data model
071 [Introduction 3-1-1] The need for abstractions (072)

073 [Introduction 3-2-1] Data types
074 [Introduction 3-3-1] Sequence types
075 [Introduction 3-4-1] Constructing result trees
076 [Introduction 3-5-1] XPath data model
077 [3-1-1-1] The file abstractions
078 [3-1-2-1] Parent/child and attachment relationships
079 [3-1-3-1] Comment node and processing instruction node
080 [3-1-4-1] Element node
081 [3-1-5-1] Namespace node
082 [3-1-6-1] Attribute node (083) (084)

085 [3-1-7-1] Text node
086 [3-1-8-1] White-space-only text nodes (087) (088) (089)

090 [3-1-9-1] Internet Explorer compatibility
091 [3-1-10-1] Document node
092 [3-1-11-1] Summary of XPath data model nodes (093)

Page 531 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Modularizing the source data
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

Modularizing and sharing data fragments is important when strategizing information
management

- centralizing the definition of information removes consistency problems introduced when
making copies of information

- managing the information by the custodian or owner of the information allows users of
the information to focus on other things

- e.g. not having engineers craft legal prose, let the legal department be responsible
for the text used

Using the physical entity structure for sharing data fragments is indelicate
- recall page 9
- external parsed general entities are suitable for fragmenting a large instance into many

pieces, but not for sharing the pieces
- each XML document has its own parsing context of defined entities
- changing a referenced external parsed general entity to suit one including instance may

make other including instances not well formed
- due to a reference to an entity in the first instance's parsing context that is not

available in the second instance's parsing context

Using separate XML documents for information supports maintenance
- each document is, at the least, XML well-formed
- each document may, itself, be fragmented by using external parsed general entities, but

that isn't noticed by the transform accessing the XML document

Transforms can bring into the transformation picture an arbitrary number of node trees
- recall page 212
- processors recognizing different URI strings create node trees from different kinds of

sources
- the result can be constructed using nodes from any source node tree

Each transformation product has its own conventions for URI strings for resources
- typical Internet protocols are widely supported
- different conventions to engage different data projections
- understanding the URI schemes available in each processor is critically important

- e.g. how to find resources
- e.g. how to perform queries on data bases

Page 257 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

094 [3-1-12-1] Depiction of a complete node tree (095) (096) (097) (098) (099)

100 [3-2-1-1] Expressions (101)

102 [3-2-2-1] XPath 2 comment expression
103 [3-2-3-1] XPath 2 tuple expression (104)

105 [3-2-4-1] XPath 2 conditional expression
106 [3-2-5-1] XPath expression types (107)

108 [3-2-6-1] Address evaluation context (109) (110)

111 [3-2-7-1] Location path expression structure (112) (113)

114 [3-2-8-1] Location steps (115) (116)

117 [3-2-9-1] Axes (118)

119 [3-2-10-1] Node tests (120) (121) (122) (123)

124 [3-2-11-1] Abbreviations
125 [3-2-12-1] Predicates (126)

127 [3-2-13-1] Example node-set expressions (128) (129)

130 [3-2-14-1] Location path expression evaluation summary (131)

132 [3-2-15-1] Processing of node-sets from reverse axes (133)

134 [3-2-16-1] Mimicking an XPath 1.0 conditional expression for node sets
135 [4] Processing model
136 [Introduction 4-1-1] A predictable behavior for processors (137) (138)

139 [4-1-1-1] "If - Then" conditionality
140 [4-1-2-1] "If - Else If - Else" conditionality
141 [4-1-3-1] Node type testing (142) (143)

144 [4-2-1-1] Example transformation requirement (145) (146)

147 [4-2-2-1] Approaches to transformation (148)

149 [4-2-3-1] Copying source tree nodes
150 [4-2-4-1] Constructing result text (151) (152)

153 [4-2-5-1] Serializing result text
154 [4-2-6-1] Sample text generation
155 [4-2-7-1] Repositioning using "pull" (156)

157 [4-2-8-1] Card sample pull transforms
158 [4-3-1-1] Repositioning using "push" (159) (160) (161)

162 [4-3-2-1] Empty templates
163 [4-3-3-1] Modes
164 [4-3-4-1] Built-in template rules
165 [4-3-5-1] Template rule conflict resolution (166) (167)

168 [4-3-6-1] General approach to writing templates
169 [4-3-7-1] Card sample push transforms
170 [4-4-1-1] Processing model summary
171 [4-4-2-1] Parallelism
172 [4-4-3-1] Suggested stylesheet development approach
173 [5] Transformation environment
174 [Introduction 5-1-1] The transformation environment (175)

176 [5-1-1-1] The stylesheet document/container element (177) (178) (179) (180) (181) (182)

183 [5-1-2-1] Documenting stylesheets (184)

185 [5-2-1-1] Importing schema definitions
186 [5-2-2-1] Validating result tree nodes
187 [5-3-1-1] Namespace protection (188) (189) (190)

191 [5-3-2-1] Serializing the result tree (192) (193) (194) (195) (196)

197 [5-3-3-1] Illustration of output methods (198)

199 [5-3-4-1] Character maps (200)

201 [5-3-5-1] Multiple result trees
202 [5-3-6-1] Uncontrolled processes
203 [5-4-1-1] Communication facilities

Page 532 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Unparsed entity referencing in XSLT
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

Accessing the set of unparsed entity declarations for a document:
- see figure in Extensible Markup Language (XML) (page 9) for an illustration
- the attribute named "ent " is pointing to the entity named "x" which is pointing to the

URI "x.gif " declared to be in the notation named "gif-file " understood by an
application as being of the type described by the URI "gif-uri "

- XSLT does not give any access to notation declarations or to the URI associated with a
notation name

Unparsed entities are general entities declared in the DTD with an NDATA specification of the
notation of the entity.

The root node of every document includes a mapping of each unparsed entity to the associated
URI:

- the URI may be resolved by the XSLT processor from the public identifier
- otherwise the URI is the system identifier
- when the URI is relative, it is resolved to be absolute by using the base URI of the entity

declaration

An XSLT stylesheet can obtain the public and system identifiers for an unparsed entity using:
- document used is that of the current node
- if no such entity exists, the empty string is returned

unparsed-entity-uri(entity-name-string-argument)

- returns the specified unparsed entity's absolute system identifier

 unparsed-entity-public-id(entity-name-string-argument)

- returns the of the specified unparsed entity's public identifier

The file imgsamp-ent.xml uses an unparsed entity to point to a graphic's file name, rather
than directly encoding the filename in an attribute:
01 <!DOCTYPE imgsamp [
02 <!NOTATION gif SYSTEM "">
03 <!ENTITY logo SYSTEM "crane.gif" NDATA gif>
04 <!ENTITY house PUBLIC "urn:X-Crane:pix:house" "house.gif" NDATA gif>
05]>
06 <imgsamp>
07 <para>Here is an example:</para>
08 <fig file="logo">Crane Logo</fig>
09 <para>And a line drawing of a house:</para>
10 <fig file="house">House drawing</fig>
11 <para>End of example</para>
12 </imgsamp>

Page 258 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

204 [5-4-2-1] Schema type communication in XSLT 2
205 [5-4-3-1] Communication facilities in XPath 2
206 [5-4-4-1] Communication facilities in XSLT (207) (208)

209 [6] Transform and data management
210 [Introduction 6-1-1] Why modularize logical and physical structures? (211) (212) (213) (214)

215 [6-1-1-1] Internal general entities (216) (217) (218) (219)

220 [6-1-2-1] Variables and parameters (221) (222)

223 [6-1-3-1] Variable and parameter binding (224) (225) (226) (227) (228) (229)

230 [6-1-4-1] Conditional variable assignment (231)

232 [6-1-5-1] Named templates (233) (234) (235) (236) (237) (238) (239)

240 [6-1-6-1] User-defined functions (241)

242 [6-1-7-1] Explicit loop repetition (243)

244 [6-2-1-1] External parsed general entities in XML files
245 [6-2-2-1] Included stylesheets
246 [6-2-3-1] Imported stylesheets (247) (248) (249) (250) (251) (252)

253 [6-2-4-1] Extension mechanisms (254) (255) (256)

257 [6-3-1-1] Modularizing the source data
258 [6-3-2-1] Unparsed entity referencing in XSLT (259)

260 [6-3-3-1] Document referencing in XPath 2 (261)

262 [6-3-4-1] Document referencing in XSLT (263) (264) (265) (266) (267) (268) (269)

270 [7] Data type expressions and functions
271 [Introduction 7-1-1] Data type expressions and functions (272) (273) (274) (275) (276) (277) (278)

(279) (280)

281 [7-1-1-1] Calculating values using expression functions
282 [7-2-1-1] Calculating values using number functions (283) (284) (285) (286)

287 [7-3-1-1] Calculating values using string functions (288) (289) (290) (291) (292) (293)

294 [7-3-2-1] Decimal formatting in XSLT (295) (296) (297) (298) (299)

300 [7-3-3-1] Regular expressions (301) (302) (303) (304)

305 [7-3-4-1] String analysis in XSLT 2.0 (306)

307 [7-4-1-1] Calculating values using node-set-related expression functions (308) (309)

310 [7-4-2-1] Node-set intersection and difference in XSLT 1 (311)

312 [7-4-3-1] User XML identifier referencing (313) (314) (315)

316 [7-4-4-1] Data-model identifier referencing (317) (318)

319 [7-4-5-1] XSLT key node referencing (320) (321) (322) (323)

324 [7-4-6-1] Current node referencing in XSLT
325 [7-5-1-1] Sequence operator and functions (326) (327) (328) (329) (330)

331 [7-6-1-1] Calculating values using Boolean functions (332) (333) (334) (335)

336 [7-7-1-1] Qualified-name functions (337)

338 [7-7-2-1] URI functions
339 [7-8-1-1] Date and time functions and operators (340) (341) (342) (343) (344)

345 [7-8-2-1] Formatting date and time strings (346)

347 [7-9-1-1] Inferring structure when there is none (348) (349)

350 [7-9-2-1] Templates as pseudo-subroutines (351) (352) (353)

354 [7-9-3-1] Passing variables to pseudo-subroutines (355) (356)

357 [8] Constructing the result tree
358 [Introduction 8-1-1] Constructing result-tree nodes (359)

360 [8-1-1-1] Building result tree nodes directly
361 [8-1-2-1] Constructing attribute nodes (362) (363)

364 [8-1-3-1] Constructing element nodes (365)

366 [8-1-4-1] Constructing annotation nodes (367)

368 [8-1-5-1] Constructing namespace nodes
369 [8-1-6-1] Constructing document nodes (370)

371 [8-1-7-1] Constructing text nodes

Page 533 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Unparsed entity referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

The stylesheet imgsamp-ent.xsl references the filename to be displayed through the entity
declaration found in the DTD of the source file:
01 <?xml version="1.0"?><!--imgsamp-ent.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [
04 <!ENTITY dark-green "#004400">
05]>
06 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
07 version="1.0"
08 xmlns="http://www.w3.org/TR/REC-html40">
09

10 <xsl:output method="html"
11 doctype-public="-//W3C//DTD HTML 4.0 Transitional//EN"/>
12

13 <xsl:template match="/"> <!-- root rule -->
14 <html>
15 <head><title>Image Sample</title></head>
16 <body><xsl:apply-templates/></body>
17 </html>
18 </xsl:template>
19

20 <xsl:template match="fig">
21 <div style="font-size:10pt;text-align:center">
22
23 <div>
24 <xsl:apply-templates/>
25 </div>
26 </div>
27 </xsl:template>
28

29 <xsl:template match="para">
30 <div style="font-size:15pt;color=&dark-green;">
31 <xsl:apply-templates/>
32 </div>
33 </xsl:template>
34

35 </xsl:stylesheet>

Page 259 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

372 [8-1-8-1] Escaping text placed in the result tree (373) (374) (375) (376) (377) (378)

379 [8-2-1-1] Copying source tree nodes to the result tree (380) (381) (382) (383) (384) (385) (386) (387)

(388) (389)

390 [8-2-2-1] Building result tree nodes with literal result elements
391 [8-3-1-1] Source tree numbering (392) (393) (394) (395) (396) (397) (398)

399 [8-3-2-1] Formatting numbers as a sequence of characters (400)

401 [9] Sorting and grouping
402 [Introduction 9-1-1] Sorting and grouping (403) (404)

405 [9-1-1-1] Sorting opportunities
406 [9-1-2-1] Sorting sequences
407 [9-1-3-1] The sort instruction (408)

409 [9-1-4-1] Sort examples (410)

411 [9-2-1-1] Grouping objectives
412 [9-2-2-1] Adjacent grouping in XSLT 1.0 (413) (414)

415 [9-2-3-1] The essence of grouping under uniqueness (416)

417 [9-2-4-1] Grouping under uniqueness using axes in XSLT 1.0 (418)

419 [9-2-5-1] Grouping under uniqueness using variables in XSLT 1.0 (420) (421)

422 [9-2-6-1] Grouping under uniqueness using keys in XSLT 1.0 (423) (424) (425)

426 [9-2-7-1] Grouping under uniqueness within sub-trees in XSLT 1.0 (427) (428) (429) (430) (431)

(432)

433 [9-2-8-1] When to use different grouping methods
434 [9-2-9-1] Built-in grouping facilities in XSLT 2.0 (435)

436 [9-2-10-1] Adjacent grouping in XSLT 2.0 (437) (438)

439 [9-2-11-1] Grouping under uniqueness in XSLT 2.0 (440)

441 [9-2-12-1] Grouping flat information in XSLT 2.0 (442) (443) (444)

445 [9-2-13-1] Grouping based on a concatenated sequence
446 [9-3-1-1] Finding the minimum and maximum values
447 [A] XML to HTML transformation
448 [Introduction A-1-1] Historical web standards for presentation
449 [A-1-1-1] Hypertext Markup Language (HTML)
450 [A-1-2-1] Web Accessibility Initiative (WAI)
451 [A-1-3-1] Cascading Stylesheets (CSS)
452 [A-1-4-1] Browser screen painting
453 [A-1-5-1] Extensible HyperText Markup Language (XHTML)
454 [A-2-1-1] What makes well-formed and valid HTML? (455) (456) (457)

458 [A-3-1-1] Image elements (459) (460)

461 [A-3-2-1] HTML meta-data (462)

463 [A-3-3-1] Anchor elements (464) (465)

466 [B] XSL formatting semantics introduction
467 [Introduction B-1-1] Formatting objectives (468)

469 [B-1-1-1] Summary of formatting model components (470) (471) (472) (473)

474 [B-2-1-1] Formatting object vocabulary
475 [B-3-1-1] Example stylesheet with formatting constructs (476) (477)

478 [C] Instruction, function and grammar summaries
479 [Introduction C-1-1] Quick summaries
480 [C-1-1-1] XSLT 1.0 element summary
481 [C-1-2-1] XPath 1.0 and XSLT 1.0 function summary
482 [C-1-3-1] XPath 1.0 grammar productions
483 [C-1-4-1] XSLT 1.0 grammar productions
484 [C-2-1-1] XSLT 2.0 element summary
485 [C-2-2-1] XPath 2.0 and XSLT 2.0 function summary
486 [C-2-3-1] XPath 2.0 grammar productions
487 [C-2-4-1] XSLT 2.0 grammar productions

Page 534 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XPath 2
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

 doc(uri-string)

- returns a document node for the apex of the tree referenced by the URI based on the
processor's "available documents"

- a run-time error is triggered if a document node is not returned
- if the URI has a fragment identifier, the document-node apex of the tree is the node

referenced by the fragment identifier

 doc-available(uri-string)

- returns true if doc(uri-string) returns a document node, otherwise returns false

Processors support typical absolute and relative URI strings
- if the URI is a relative URI the base URI is that of the node in the transform fragment

where the function is being executed
- e.g. eXist database URI resolution

- without a protocol, the arguments are considered absolute or relative paths
- a full URI uses the local host

- doc("http://localhost:8080/exist/servlet/db/test.xml")
- documented at http://exist-db.org/xquery.html#N10263

Page 260 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

488 [D] Tool questions
489 [Introduction D-1-1] Sample questions for vendors (490) (491) (492)

493 [D-1-1-1] XSLStyle™ (494) (495) (496)

497 [Conclusion -1-1] Where to go from here?
498 [Conclusion -2-1] Colophon
499 [Conclusion -3-1] Obtaining a copy of the comprehensive tutorial
500 [Postlude] Practical Transformation Using XSLT and XPath (Postlude)

Page 535 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XPath 2 (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

collection() and collection(uri-string)

- returns a sequence of nodes based on the implementation's definition of "available
collections"

- omitting the string returns the sequence of nodes in the default collection
- e.g. MarkLogic

- default collection returns the root node of all documents in the database
- e.g. Saxon

- provides a number of options for selecting files in a collection
- collection('./?select=*.xml;recurse=yes;on-error=ignore')

- "recursively traverse through directories from the current directory looking
for files ending with .xml " returning the root node of those that don't fail

- for an absolute URI in the file system, e.g. the X: drive, use
file:///x:/?...

- when using the "file:/ " protocol to point to a directory:
- the following are query parameters allowed in the URI following "?"
- select= file-name-pattern

- determines which files in the directory are selected
- recurse= yes-or-no

- controls recursively descending the directories
- strip-space= yes-or-no

- controls stripping of white-space-only text nodes from the source trees
- validation= strict-or-lax-or-preserve-or-strip

- controls the application of validation to the input
- on-error= fail-or-warn-or-ignore

- controls the action taken if the file cannot be opened as needed
- parser= file-name-pattern

- selects the XMLReader Java class to use for reading the files found
- when using the "file:/ " protocol to point to a file

- the file is assumed to be an XML instance listing the document references
for the files in the collection

- 01 <collection>
02 <doc href="doc1.xml"/>
03 <doc href="doc2.xml"/>
04 </collection>

- documented at
http://www.saxonica.com/documentation/javadoc/net/sf/saxon/functions/StandardCollectionURIResolver.html

Creating the directory list outside the transform is portable:
- http://code.google.com/p/xml-dir-listing/
- creates an XML document of directories and their contents
- many features for deciding what goes into the directory listing

Page 261 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Practical Transformation Using XSLT and XPath
Index

A
abbreviation 124
abs() function285

in chapter summary 274
referenced 502

absolute address 111
address 106
adjust-date-to-timezone() function341

in chapter summary 277
referenced 502

adjust-dateTime-to-timezone() function
341

in chapter summary 277
referenced 502

adjust-time-to-timezone() function341
in chapter summary 277
referenced 502

aggregation 45
alphabetic numbering 399
<xsl:analyze-string> instruction305

referenced 252, 273, 492
ancestor:: axis 72, 118
ancestor-or-self:: axis 72, 118
anchor 463-465
and 332
annotations 79
anyURI data type 73

functions 338
application front-end 42
<xsl:apply-imports> instruction250

in chapter summary 213
in instruction summary 480
referenced 492

<xsl:apply-templates> instruction158
in chapter summary 138
in instruction summary 480
referenced 108, 170, 250, 492

arity 240
as= attribute

in <xsl:function> 220
in <xsl:param> 220
in <xsl:template> 220, 235, 237
in <xsl:variable> 220, 224
in <xsl:with-param> 220

ASP 200, 373
atomic values 155
attachment relationship 78, 80-82
attribute () 119
attribute:: axis 94, 117-118, 124

<xsl:attribute> instruction361
in chapter summary 359
in instruction summary 480
referenced 373, 492

attribute node 82-84, 92, 94, 149, 164, 202,
361, see also node; attribute node

attribute set 362
attribute value template 150, 152-153, 281,

361, 364, 366, 368, 408
attribute() node test 119, 121
<xsl:attribute-set> instruction362

in chapter summary 359
in instruction summary 480
referenced 182, 492

aural media 20, 39
avg() function330

in chapter summary 276
referenced 105, 502

axis 72, 114, 116, 117-118, 118, 119-121,
124-125, 132-133

diagram 72
axis-based location step 114

B
base URI 77, 258, 260, 262, 269
base-uri() function309

in chapter summary 279
referenced 502

base64Binary data type 73
binary serialization 40-41, 136, 269
boolean data type 73, 100, 220

functions 331-335
boolean() function331

in chapter summary 274
in function summary 485
referenced 125, 502

boundary space 86
browser windows 457
built-in template rules 148, 164, 234
byte data type 73, 283
byte-order-mark= attribute 196

C
<xsl:call-template> instruction232

in chapter summary 213, 273
in instruction summary 480
referenced 493

Cascading Stylesheets (CSS) 19-20, 467
case of letters 293
case-order= attribute 408

Page 536 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

Accessing documents at run time other than the source document:
document(non-node-set-uri-string, node-when-not-stylesheet-node)

- returns the root node of the XML document addressed by the URI string value
- the URI may include a fragment identifier thus qualifying the node set to be a

particular subset of the remote document resource
- returns the sub-tree of the nodes identified as a standalone tree

- relative URI values are resolved using the base URI of the node value second argument
- if absent, the stylesheet instruction's Base URI is used

document(node-set, node-when-not-node-set-node)

- returns the union of calling document() with the string value of each of the nodes
- when the second argument is present, it is used for each call
- when the second argument is absent, uses the Base URI of the node from which the string

of the first argument is calculated
- document(node) is different than document(string(node))

document("", node-when-not-stylesheet-node)

- returns the root node of the document fragment in which the supplied node in the second
argument is found

- when the second argument absent, the resource is the stylesheet fragment in which the
instruction exists that uses the function call

Once the root nodes are obtained from each of the remote documents:
- they can be processed as one would process any node set

- as either a stand-alone step of a complete location path
- the first step in a multiple-step location path

- node values can be pulled for inclusion in the result:
01 <xsl:value-of select="(document('infofile.xml',.)
02 //figure)[position()=last()]"/>

- nodes can be pushed through the stylesheet for template rule processing:
01 <xsl:apply-templates select="document('infofile.xml')
02 //table"/>

Base URI is subdirectory containing the XML syntax for the supplied node
- see Extensible Markup Language (XML) (page 9) for an illustration of external parsed

general entities
- stylesheet nodes may come from included or imported stylesheet fragments

Conference paper regarding wide document retrieval in a production system
- see the "Simple Worldwide Aggregation Using XSLT" link from the Crane Softwrights

Ltd. home page under "Recommended reading"

Page 262 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

cast as 272, 327
castable as 272, 327
casting 339-340
<![CDATA[]]> 372
CDATA section 85, 93, 195, 372
cdata-section-elements= attribute 195
ceiling() function285

in chapter summary 274
in function summary 485
referenced 502

character= attribute 199
character set 49, 456
<xsl:character-map> instruction199

referenced 175, 182, 196, 493
child:: axis 72, 118, 124
child relationship 78, 80
<xsl:choose> instruction140

in chapter summary 138
in instruction summary 480
referenced 134, 493

codepoint-equal() function290
in chapter summary 274
referenced 502

codepoints-to-string() function290
in chapter summary 274
referenced 502

collation 180, 289, 332
collation= attribute

in <xsl:for-each-group> 434
in <xsl:key> 320
in <xsl:sort> 408

collection() function261
in chapter summary 214
referenced 502

colophon 528
comma separated list 139
command-line arguments 206
comment () 119
<xsl:comment> instruction366

in chapter summary 359
in instruction summary 480
referenced 373, 493

comment node 79, 92, 94, 164, 366
comment() node test 119
comments in XPath 100, 102
compare() function290

in chapter summary 274
referenced 503

comparison operators 332, 333
comparison space 283, 331, 336, 339

concat() function290
in chapter summary 274
in function summary 485
referenced 503

conditional expression 100, 105, 134, 230
conditional marked section 217
conditional processing 139, 140
constraints

data type constraints 235, 240
contains() function292

in chapter summary 274
in function summary 485
referenced 503

context item, size, position108-110, 139-140,
240

context list 108-110
<xsl:copy> instruction379

in chapter summary 359
in instruction summary 480
referenced 365, 493

copy-namespaces= attribute
in <xsl:copy> 380

<xsl:copy-of> instruction379
in chapter summary 138, 359
in instruction summary 481
referenced 493

count= attribute 392
count() function325

in chapter summary 276
in function summary 485
referenced 125, 222, 503

current() function324
in chapter summary 280
in function summary 485
referenced 503

current node, current node list 108-110, 124,
155, 170, 240, 324, 379, 407

current-date() function341
in chapter summary 277
referenced 503

current-dateTime() function341
in chapter summary 277
referenced 503

current-group() function435
in chapter summary 404
referenced 503

current-grouping-key() function435
in chapter summary 404
referenced 503

current-time() function341
in chapter summary 277
referenced 503

Page 537 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

The following illustrates the possible uses of the document() function with a relative URI:

Process
 samp/data/incoming/purch1.xml
 with
samp/ss/po/purchase.xsl

samp/ss/po/purchase.xsl

samp/ss/po/data.xml

samp/ss/common/addr.xsl

samp/ss/common/data.xml

Stylesheet file resources:

samp/data/incoming/purch1.xml

samp/data/incoming/data.xml

samp/data/companies/info.xml

samp/data/companies/data.xml

Source file resources:

<xsl:import href="../common/addr.xsl"/>

<xsl:template name="bar">

... select="document('data.xml')"/>

<city>

<!ENTITY foo

 SYSTEM "../companies/info.xml">

&foo;

<xsl:template match="city">

 <xsl:call-template name="bar"/>

 ... select="document('data.xml')"...

 ... select="document('data.xml',/)"...

 ... select="document('data.xml',.)"...

In a file system there are four possible sources of a relatively addressed resource as shown:
- the directory in which the invoked stylesheet file (e.g. purchase.xsl) is found
- the directory in which the stylesheet fragment executing the document() function (e.g.

addr.xsl) is found
- the directory in which the invoked source file (e.g. purch1.xml) is found
- the directory in which an external parsed general entity including the current node (e.g.

info.xml) is found

Page 263 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

D
data() function309

in chapter summary 279
referenced 151, 503

data model of XML documents10-11, 17, 21,
71-134, 77-99

data types 14, 73, 101, 204, 283
data-type= attribute 408
date 339-344
date data type 73, 339
dateTime data type 73, 339
dateTime() function341

in chapter summary 277
referenced 503

day-from-date() function343
in chapter summary 277
referenced 503

day-from-dateTime() function342
in chapter summary 277
referenced 503

days-from-duration() function344
in chapter summary 277
referenced 504

debugging 25, 205-206, 367, 384
decimal data type 73, 115, 283
<xsl:decimal-format> instruction295

in instruction summary 481
referenced 182, 273, 494

decimal-separator= attribute 295
declarative approach 24
deep-equal() function328

in chapter summary 276
referenced 504

default attributes 14, 82
default-collation= attribute 180
default-collation() function289

in chapter summary 275
referenced 504

default-validation= attribute 180
descendant:: axis 72, 118
descendant-or-self:: axis 72, 118, 124
device independence 20
digit= attribute 295
directory 261
disable output escaping 153, 371
disable-output-escaping= attribute

in <xsl:text> 371, 373
in <xsl:value-of> 373

distinct-values() function328
in chapter summary 276
referenced 411, 504

div 284, 340

doc() function260
in chapter summary 214
referenced 176, 504

doc-available() function260
in chapter summary 214
referenced 504

DocBook 184
doctype-public= attribute 193
doctype-system= attribute 193
document() function262

in chapter summary 214
in function summary 485
referenced 176, 433, 504

<xsl:document> instruction369
in chapter summary 359
referenced 180, 208, 494

document model 10-11, 25, 29
Document Object Model (DOM) 15, 22, 26,

71, 93
document order26, 78, 80, 118, 126, 134, 412
Document Style Semantics and Specification

Language (DSSSL) 20, 467
Document Type Definition (DTD)11, 14, 17,

25, 82, 84, 215
document-node () 119
document-node() node test 119, 121
document-uri() function309

in chapter summary 279
referenced 504

documenting stylesheets 183-184
double data type 73, 115, 282-283
duration 340, 344
duration data type 73, 340

E
effective Boolean value 125, 281-282, 287,

307, 325
element () 119
<xsl:element> instruction364

in chapter summary 359
in instruction summary 481
referenced 365, 494

element node 80, 92, 94, 164, 364, see also
node; element node

element() node test 119, 121
element-available() function255

in chapter summary 214
in function summary 485
referenced 504

elements= attribute
in <xsl:preserve-space> 88
in <xsl:strip-space> 88

Page 538 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

Note that with the availability of the stylesheet to this function:
- the stylesheet can contain top-level, non-XSLT constructs containing rich markup that

can be accessed as a source node tree (thus providing a location for stylesheet data that
is not separated from the stylesheet file itself)

- note that the container element for such data must have its own namespace as it
cannot have the XSLT namespace and it cannot use the default namespace

- the contents of the container element can use any namespace
- it may be necessary to use exclude-element-prefixes= to keep the data's

namespace from being declared in the emitted result tree
- the stylesheet can process result tree fragment top-level variable declarations as a node

set as follows:
01 <xsl:apply-templates
02 select="document('')/*/xsl:variable[@name=' variable-qname']"/>

Page 264 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

empty() function325
in chapter summary 276
referenced 504

empty sequence 113
empty template 162
empty-sequence () 74, 76
encode-for-uri() function338

in chapter summary 280
referenced 504

encoding= attribute 196
ends-with() function292

in chapter summary 275
referenced 504

entities 85, 372
external parsed general entities9, 244, 257
external unparsed general entities 9,
258-259

internal general entities 215-219
ENTITIES data type 73
ENTITY data type 73
eq 272, 332
eq 332
error() function205

in chapter summary 174
referenced 505

errors 112, 122, 203, 205
dynamic errors 203
static errors 203
type errors 203

escape-html-uri() function338
in chapter summary 280
referenced 505

escape-uri-attributes= attribute 194
escaping text 153
evaluation context 108-110, 155
every...in..satisfies 272, 335
exactly-one() function326

in chapter summary 276
referenced 505

except 272, 307
exclude-result-prefixes= attribute 81,

93, 151, 179, 184, 365, 390
exists() function325

in chapter summary 276
referenced 505

expanded name 30, 336
expressions 100-134, 281
extensible design 26, 253
Extensible Hypertext Markup Language

(XHTML) 25, 136, 453
Extensible Markup Language (XML)7, 8-15,

24-25, 136

Extensible Stylesheet Language Formatting
Objects (XSL-FO) 7, 19, 20, 32, 39, 399,
467-477

Extensible Stylesheet Language Transforma-
tions (XSLT) 7, 19, 21-23, 32, 34

extension-element-prefixes= attribute
179, 390

extensions 32, 179, 253-256
extension functions 254
extension instructions 255

external document 260-261, 262-269

F
<xsl:fallback> instruction256

in chapter summary 213
in instruction summary 481
referenced 256, 494

false() function331
in chapter summary 274
in function summary 485
referenced 505

filter 116, 125-126
flags= attribute 305
float data type 73, 283
floating point numbers 282
floor() function285

in chapter summary 274
in function summary 485
referenced 505

flow semantics 20
following:: axis 72, 118
following-sibling:: axis 72, 118
for 76, 103
<xsl:for-each> instruction155

in chapter summary 138
in instruction summary 481
referenced 108, 170, 240-242, 250, 252,
435, 494

<xsl:for-each-group> instruction434
in chapter summary 404
referenced 252, 411, 435, 495

format= attribute
in <xsl:number> 399
in <xsl:result-document> 201

format-date() function345
in chapter summary 277
referenced 505

format-dateTime() function345
in chapter summary 277
referenced 505

format-number() function294
in chapter summary 275
in function summary 485
referenced 505

Page 539 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

Consider the following example:
01 <?xml version="1.0"?><!--document.xsl-->
02 <!--XSLT 1.0 - http://www.CraneSoftwrights.com/training -->
03 <!DOCTYPE xsl:stylesheet [<!ENTITY nl "
">]>
04 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
05 version="1.0">
06

07 <xsl:output method="text"/>
08

09 <xsl:template match="/">
10 <xsl:text>Processing refs for each document:&nl;</xsl:text>
11

12 <!--using document() as a stand-alone location path-->
13 <xsl:for-each select="document(//doc/@loc)">
14 <xsl:text>&nl;Resource: </xsl:text>
15 <xsl:value-of select="resource/title"/>
16 <xsl:for-each select="//ref">
17 <xsl:sort/>
18 <xsl:text>&nl;</xsl:text><xsl:value-of select="title"/>
19 </xsl:for-each>
20 </xsl:for-each>
21 <xsl:text>&nl;&nl;</xsl:text>
22 <xsl:text>Processing references in all documents:</xsl:text>
23 <xsl:text>&nl;</xsl:text>
24

25 <!--using document() as the first step in a location path-->
26 <xsl:for-each select="document(//doc/@loc)//ref/title">
27 <xsl:sort/>
28 <xsl:value-of select="."/><xsl:text>&nl;</xsl:text>
29 </xsl:for-each>
30 </xsl:template>
31

32 </xsl:stylesheet>

Page 265 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

format-time() function345
in chapter summary 277
referenced 505

formatting 19
formatting semantics 20

Formatting Object Processor (FOP) 477
from= attribute 392
<xsl:function> instruction240

in chapter summary 213
referenced 182, 495

function-available() function254
in chapter summary 214
in function summary 485
referenced 505

functions 26, 271-356
user-defined 26, 33, 240-241

G
gDay data type 73
ge 272, 332
ge 332
general purpose XML transformations 24
generate-id() function316

in chapter summary 279
in function summary 485
referenced 506

generate-id()
generated identifier 77, 80

gMonth data type 73
gMonthDay data type 73
group-adjacent= attribute 434
group-by= attribute 434
group-ending-with= attribute 434
group-starting-with= attribute 434
grouping of information 403, 411-445

adjacent grouping 411, 412-414, 433-434
by axes 417-418, 433
by keys 422-425, 428, 433
by variables 419-421, 430, 433
uniqueness grouping 411, 415-416,
417-418, 419-421, 422-425, 433

grouping-separator= attribute
in <xsl:decimal-format> 295
in <xsl:number> 399

grouping-size= attribute 399
gt 272, 332
gt 332
gYear data type 73
gYearMonth data type 73

H
hexBinary data type 73

hierarchies in an XML document
logical 10, 17, 48, 222
physical 9, 17

history 27
hours-from-dateTime() function342

in chapter summary 277
referenced 506

hours-from-duration() function344
in chapter summary 277
referenced 506

hours-from-time() function343
in chapter summary 277
referenced 506

href= attribute
in <xsl:import> 246
in <xsl:include> 245
in <xsl:result-document> 201

Hypertext Markup Language (HTML)24-25,
44, 49, 136, 376, 448-465, see also
Extensible Hypertext Markup Language
(XHTML)

serialization 36, 192, 269

I
IBTWSH 453
id= attribute 177
ID data type 73
id() function313

in chapter summary 280
in function summary 486
referenced 111, 465, 506

identity transform 385
ID/IDREF 14, 80, 84, 312-315, 316, 318
idiv 284
IDREF data type 73
idref() function315

in chapter summary 280
referenced 506

IDREFS data type 73
IEEE number system 282
if 76, 105, 281
<xsl:if> instruction139

in chapter summary 138
in instruction summary 481
referenced 495

images 458-460
imperative approach 24
implicit-timezone() function341

in chapter summary 277
referenced 506

<xsl:import> instruction246
in chapter summary 213
in instruction summary 481
referenced 88, 182, 244, 495

Page 540 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

With the control data file document.xml :
01 <?xml version="1.0"?>
02 <set>
03 <doc loc="doc1.xml"/>
04 <doc loc="doc2.xml"/>
05 </set>

The data file doc1.xml with unsorted references:
01 <?xml version="1.0"?>
02 <resource>
03 <title>First Resource</title>
04 <ref><title>D - First ref in First resource</title></ref>
05 <ref><title>B - Second ref in First resource</title></ref>
06 <ref><title>E - Third ref in First resource</title></ref>
07 </resource>

And the data file doc2.xml with unsorted references:
01 <?xml version="1.0"?>
02 <resource>
03 <title>Second Resource</title>
04 <ref><title>C - First ref in Second resource</title></ref>
05 <ref><title>A - Second ref in Second resource</title></ref>
06 </resource>

Page 266 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

<xsl:import-schema> instruction185
referenced 175, 182, 495

imported schema 185, 370
in-scope-prefixes() function337

in chapter summary 279
referenced 117, 506

<xsl:include> instruction245
in chapter summary 213
in instruction summary 481
referenced 182, 244, 495

include-content-type= attribute 194
indent= attribute 195, 384
indentation 86, 195
index-of() function328

in chapter summary 276
referenced 506

inferring structure 347-349
infinity= attribute 295
inherit-namespaces= attribute 390

in <xsl:copy> 380
in <xsl:element> 364

input-type-annotations= attribute 181
insert-before() function329

in chapter summary 276
referenced 506

instance of 272, 327
instructions 26, 54
int data type 73, 283
integer data type 73, 115, 283
Internet Explorer (IE) 47, 52, 90
intersect 272, 307
invocation 55, 86, 88, 93, 225
iri-to-uri() function338

in chapter summary 280
referenced 506

is 272, 332
is 316, 332
item() 74

K
key() function321

in chapter summary 280
in function summary 486
referenced 111, 506

<xsl:key> instruction320
in chapter summary 273
in instruction summary 481
referenced 182, 252, 496

keys 319-323, 422-425
Kleene operator 74, 100, 224

L
lang= attribute

in <xsl:number> 399
in <xsl:sort> 408

lang() function331
in chapter summary 274
in function summary 486
referenced 507

language data type 73
last() function109

in chapter summary 76
in function summary 486
referenced 222, 305, 507

le 272, 332
le 332
legend 35
letter-value= attribute 399
level= attribute 393-394
lexical space 283, 331, 336, 340
links to resources

XML 16
XSL 28

literal 115
literal result element 54, 178, 281, 390
local name 30, 336
local-name() function308

in chapter summary 279
in function summary 486
referenced 507

local-name-from-QName() function336
in chapter summary 279
referenced 507

location path 106-107, 108-110, 111-113,
114-116

logical document hierarchy 10, 17, 222
long data type 73, 283
lower-case() function293

in chapter summary 275
referenced 507

lt 272, 332
lt 332

M
mail lists 527
Mark Logic 261
markup 71, 202, 373

syntax preservation 24
match= attribute

in <xsl:key> 320
in <xsl:template> 159

matches() function303
in chapter summary 275
referenced 305, 507

matching 107

Page 541 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

The following result is produced:
01 Processing refs for each document:
02

03 Resource: First Resource
04 B - Second ref in First resource
05 D - First ref in First resource
06 E - Third ref in First resource
07 Resource: Second Resource
08 A - Second ref in Second resource
09 C - First ref in Second resource
10

11 Processing references in all documents:
12 A - Second ref in Second resource
13 B - Second ref in First resource
14 C - First ref in Second resource
15 D - First ref in First resource
16 E - Third ref in First resource

Page 267 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

<xsl:matching-substring> instruction305
referenced 273, 305, 496

Mathematical Markup Language (MathML)
29

max() function330
in chapter summary 276
referenced 507

maximum/minimum 446
media-type= attribute 196
<xsl:message> instruction206

in instruction summary 482
referenced 175, 496

meta data 461-462
method= attribute 192
min() function330

in chapter summary 276
referenced 507

minus-sign= attribute 295
minutes-from-dateTime() function342

in chapter summary 278
referenced 507

minutes-from-duration() function344
in chapter summary 278
referenced 507

minutes-from-time() function343
in chapter summary 278
referenced 507

mod 284
mode 159, 163
mode= attribute

in <xsl:apply-templates> 163
in <xsl:template> 163

modularization 22
month-from-date() function343

in chapter summary 278
referenced 507

month-from-dateTime() function342
in chapter summary 278
referenced 507

months-from-duration() function344
in chapter summary 278
referenced 508

Multimedia Internet Mail Extension 34

N
name= attribute

in <xsl:attribute> 361
in <xsl:attribute-set> 362
in <xsl:call-template> 232
in <xsl:character-map> 199
in <xsl:decimal-format> 295
in <xsl:element> 364
in <xsl:function> 240
in <xsl:key> 320
in <xsl:namespace> 368
in <xsl:output> 191
in <xsl:param> 225
in <xsl:processing-instruction> 366
in <xsl:template> 232
in <xsl:variable> 224
in <xsl:with-param> 233

Name data type 73
name() function308

in chapter summary 279
in function summary 486
referenced 508

namespace= attribute
in <xsl:attribute> 361
in <xsl:element> 364
in <xsl:import-schema> 185

namespace:: axis 94, 117-118
<xsl:namespace> instruction368

in chapter summary 359
referenced 496

namespace node 81, 98, 164, 179, 365
<xsl:namespace-alias> instruction187

in instruction summary 482
referenced 175, 182, 496

namespace-uri() function308
in chapter summary 279
in function summary 486
referenced 508

namespace-uri-for-prefix() function337
in chapter summary 279
referenced 117, 508

namespace-uri-from-QName() function336
in chapter summary 279
referenced 508

namespaces 7, 29-33, 53, 93, 161, 178,
187-190, 308, 365

default namespace120, 122, 123, 176, 390
NaN 139, 282, 331
NaN= attribute 295
 non-breaking space 215, 374, 376,

378
NCName data type 73
ne 272, 332

Page 542 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

 Note in XSLT 1 that the id() and key() functions cannot be used as anything other than
the first step in a location path as in the need to reference a unique identifier in another
document:

- it is invalid syntax to use "document(argument)/id(argument) " as a location path
- the context must be changed to the document before locating the context of the unique

identifier
- the <xsl:for-each> construct effects the repositioning during the instantiation of its

template, even when there is only one document to be referenced
- consider the example where one is trying to obtain the value of the "label " attribute

associated with the element with the unique identifier "start " in the document
"otherdoc.xml ":

- the incorrect syntax is:
01 <xsl:value-of select="
document('otherdoc.xml')/id('start')/@label"/>

- the correct syntax is:
01 <xsl:for-each select="document('otherdoc.xml')">
02 <xsl:value-of select="id('start')/@label"/>
03 </xsl:for-each>

Page 268 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

ne 332
negative zero 282
negativeInteger data type 73, 283
network applications 45
<xsl:next-match> instruction250

in chapter summary 213
referenced 250, 496

nilled() function309
in chapter summary 279
referenced 508

NMTOKEN data type 73
NMTOKENS data type 73
node 54

attribute node 82-84, 92, 94, 361
comment node 79, 92, 94, 366
document node 78, 91, 111, 369
element node 80, 92, 94
intersection and difference 310-311
namespace node 81, 92, 94, 368
node creation 360-378
node data type 100, 125, 139, 181, 220
node identity 316
node name 77, 120-121, 308
node set 150, 223, 333
node test94-95, 116-118, 119-123, 124-125
node tree 50, 71, 78, 94-99, 107, 257
node tree diagram 72
node type test 116, 119, 141-143
node-set functions 307-309
processing instruction node79, 92, 94, 366
root node 55, 92, 94, 262
text node 85, 92, 94, 164, 371

node () 119
node() node test 74, 119
node-name() function308

in chapter summary 279
referenced 508

<xsl:non-matching-substring> instruction
305

referenced 273, 496
Non-XML serialization 40
nonNegativeInteger data type 73, 283
nonPositiveInteger data type 73, 283
normalization of text 82, 85, 291
normalization-form= attribute 194
normalize-space() function291

in chapter summary 275
in function summary 486
referenced 303, 508

normalize-unicode() function288
in chapter summary 275
referenced 194, 508

normalizedString data type 73

not() function331
in chapter summary 274
in function summary 486
referenced 508

NOTATION data type 73
number data type 100, 125, 139, 220

functions 282-286
number() function282

in chapter summary 274
in function summary 486
referenced 508

<xsl:number> instruction391
in chapter summary 359
in instruction summary 482
referenced 222, 399, 497

numbering 222, 391-400
formatting patterns 294-299
formatting tokens 399-400

O
omit-xml-declaration= attribute 193
one-or-more() function326

in chapter summary 276
referenced 508

or 332, 334
order= attribute 408
ordinal= attribute 399
<xsl:otherwise> instruction140

in chapter summary 138
in instruction summary 482
referenced 497

<xsl:output> instruction191
in instruction summary 482
referenced 175, 182, 201, 497

<xsl:output-character> instruction199
referenced 175, 373, 497

output-version= attribute 201
override= attribute 240

P
page

fidelity 470
pagination

semantics 20
parallelism 26, 171
<xsl:param> instruction225

in chapter summary 213
in instruction summary 482
referenced 175, 182, 233, 250, 498

parameter 159, 220-222
parent:: axis 72, 118, 124
parent relationship 78
parse order 78, 412, see also document order
pattern 107, 392

Page 543 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Document referencing in XSLT (cont.)
Chapter 6 - Transform and data management
Section 3 - Modularizing the source data

Accessing non-XML input documents:
- opens the file content as if it were a CDATA section
- but no CDATA limitations preventing "]]> "
- returns a text string without parsing the content of the text for any markup
- no end of line normalization is performed
- a relative URI is resolved using the base URI of the instruction with this call

 unparsed-text(uri-string)

 unparsed-text(uri-string, encoding)

- the value returned is a string without any interpretation of markup
- quite typical to do string analysis on the retrieved string

 unparsed-text-available(uri-string)

 unparsed-text-available(uri-string, encoding)

- returns true or false based on whether a like call to unparsed-text() would be
successful

Example to obtain all the lines in a file as a sequence of strings:
- note that because of no end-of-line normalization, this example accommodates end-of-line

sequences for DOS, Linux and Mac operating systems
01 <xsl:for-each select="tokenize(unparsed-text($infile),'\r?\n|\r')">
02 ...
03 </xsl:for-each>

Example to retrieve and put out a text file:
01 <xsl:result-document method="text" href="newhello.txt">
02 <xsl:value-of select="unparsed-text('hello.txt')"/>
03 </xsl:result-document>

Example to retrieve and put out an HTML file:
01 <xsl:result-document method="html" href="newhello.htm">
02 <xsl:value-of select="unparsed-text('hello.htm')"
03 disable-output-escaping="yes"/>
04 </xsl:result-document>

This technique cannot be used for binary files
- the data model can only contain characters that are valid XML characters

Page 269 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

pattern-separator= attribute 295
per-mille= attribute 295
percent= attribute 295
<xsl:perform-sort> instruction406

in chapter summary 404
referenced 498

performance 154
physical document hierarchy 9, 17
polymorphism 22, 245-246
portability problems 165, 253
position() function109

in chapter summary 76
in function summary 486
referenced 222, 305, 508

positiveInteger data type 73, 283
preceding:: axis 72, 118
preceding-sibling:: axis 72, 118, 126
predicate 115-121, 124, 125-126, 126, 314,

321, 330
prefix (namespace) 30, 81, 141, 179
prefix-from-QName() function336

in chapter summary 279
referenced 509

<xsl:preserve-space> instruction88
in chapter summary 76
in instruction summary 482
referenced 93, 182, 498

primary expression 106
primary-based location step 114-115
priority 159, 166, 167, 249
priority= attribute 166
processing instruction node 79, 92, 94, 164,

366, see also node; processing instruction
node

processing model 21, 136-172
processing-instruction () 119
<xsl:processing-instruction> instruction

366
in chapter summary 359
in instruction summary 482
referenced 373, 498

processing-instruction() node test
119-120

programming 222
projection 21, 212, 257
proximity order 118
publishing 21
publish/subscribe 45
pull 58, 147, 405
purchasing 529
push 60, 147-148, 161, 405

Q
QName data type 73, 327

functions 336-337
QName() function336

in chapter summary 279
referenced 509

qualified name 30, 120, 122, 203, 220, 254,
336

query language 18

R
recommendations 27
recursion 222, 242-243
regex= attribute 305
regex-group() function305

in chapter summary 280
referenced 509

regular expressions 300-304
relationships (parent, child, attachment) 78
relative address 111
remove() function329

in chapter summary 276
referenced 509

repetition 242-243
replace() function304

in chapter summary 275
referenced 509

repositioning 58, 60, 104, 155-156, 158-161,
268

required= attribute 225
resolve-QName() function336

in chapter summary 279
referenced 509

resolve-uri() function338
in chapter summary 280
referenced 509

Resource Description Framework (RDF) 30
resource discovery 29
result set 103
result tree 24, 26, 38-39, 51, 55, 71, 75,

147-148, 197, 202, 358
result tree data type 101, 139, 220, 231
result tree fragment 223-224
<xsl:result-document> instruction201

referenced 175, 201, 208, 369, 499
result-prefix= attribute 187
reverse document order 118
reverse() function329

in chapter summary 276
referenced 509

roman numeral numbering 399
root() function309

in chapter summary 279
referenced 509

Page 544 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Chapter 7 - Data type expressions and functions

- Introduction - Data type expressions and functions
- Section 1 - Expression function usage
- Section 2 - Number expressions
- Section 3 - String expressions
- Section 4 - Node-set expressions
- Section 5 - Sequence expressions
- Section 6 - Boolean expressions
- Section 7 - Miscellaneous expressions
- Section 8 - Date and time expressions
- Section 9 - Traversing the source tree

Page 270 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

root node92, 94, 142, 164, 262, see also node;
document node

round() function285
in chapter summary 274
in function summary 486
referenced 509

round-half-to-even() function285
in chapter summary 274
referenced 509

rounding 286, 391

S
Saxon XSLT processor21, 32, 47, 49, 51, 261,

289
Scalable Vector Graphics (SVG) 29
schema declaration 121
schema type 121
schema-attribute () 121
schema-attribute() node test 121
schema-aware processing 14, 73, 77, 112
schema-element () 121
schema-element() node test 121
schema-location= attribute 185
scope 221

global scope 206, 221
local scope 221

seconds-from-dateTime() function342
in chapter summary 278
referenced 509

seconds-from-duration() function344
in chapter summary 278
referenced 509

seconds-from-time() function343
in chapter summary 278
referenced 510

select= attribute
in <xsl:analyze-string> 305
in <xsl:apply-templates> 158
in <xsl:attribute> 361
in <xsl:comment> 366
in <xsl:for-each> 155
in <xsl:for-each-group> 434
in <xsl:message> 206
in <xsl:namespace> 368
in <xsl:number> 392
in <xsl:param> 225
in <xsl:perform-sort> 406
in <xsl:processing-instruction> 366
in <xsl:sequence> 236, 406
in <xsl:sort> 407
in <xsl:value-of> 150
in <xsl:variable> 224
in <xsl:with-param> 233

self:: axis 72, 118, 124, 141

separator= attribute
in <xsl:attribute> 361
in <xsl:value-of> 150

sequence 100, 107, 113, 220, 223, 325, 327,
334

functions 325-330
sequence expression 106, 111
sequence operator 113

<xsl:sequence> instruction236
in chapter summary 213
referenced 499

sequence type 74
serialization of result tree 21, 24, 26, 36, 39,

40-41, 51, 75, 85, 136, 190, 191-196, 202,
372

set
exception 113
intersection 113
union 113

sharing data 257
short data type 73, 283
SHOWTREE 97, 99
Simple API for XML (SAX) 15, 26
simplified stylesheet 56, 176
singleton 125
some...in..satisfies 272, 335
<xsl:sort> instruction407

in chapter summary 404
in instruction summary 483
referenced 180, 252, 408, 435, 499

sorting 26, 402
source file/tree (input)25-26, 71, 136, 147-148
stable= attribute 408
standalone= attribute 193
Standard Generalized Markup Language

(SGML) 8, 25
starts-with() function292

in chapter summary 275
in function summary 486
referenced 510

static-base-uri() function309
in chapter summary 279
referenced 510

string= attribute 199
string data type73, 100, 115, 125, 139, 220

functions 287-293
string() function287

in chapter summary 275
in function summary 486
referenced 151, 510

string-join() function290
in chapter summary 275
referenced 104, 510

Page 545 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions
Chapter 7 - Data type expressions and functions

Powerful functions and expression support
- this chapter describes functions and expressions to manipulate variables and values of

data types
- the XSLT specification includes facilities implementing algorithms for

publishing-oriented facilities so that the stylesheet writer doesn't have to
- value manipulation

- boolean functions and operators
- number functions and operators
- string functions
- node set functions and operators
- sequence functions and operator
- date and time functions and operators
- item functions and operators

- regular expressions
- string analysis
- access to the source node tree

- de-referencing pointers between information items
- setting up lookup tables to tree nodes

This training material assumes xmlns:xs="http://www.w3.org/2001/XMLSchema" when
referencing W3C Schema data types

Advanced techniques
- this chapter also describes an approach to walking the source node tree in search of

information in such a way that is impossible through available pattern matching
techniques.

Page 271 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

string-length() function292
in chapter summary 275
in function summary 487
referenced 510

string-to-codepoints() function290
in chapter summary 275
referenced 510

strings 150
<xsl:strip-space> instruction88

in chapter summary 76
in instruction summary 483
referenced 93, 182, 499

stylesheet 21, 25, 53
association 7, 34
development 172
modularization 210-269

stylesheet file/tree (input) 136
<xsl:stylesheet> instruction176

in instruction summary 483
referenced 175, 500

stylesheet-prefix= attribute 187
styling structured information 19
subroutines 350-353
subscribe/publish 45
subsequence() function329

in chapter summary 276
referenced 510

substring() function292
in chapter summary 275
in function summary 487
referenced 510

substring-after() function292
in chapter summary 275
in function summary 487
referenced 510

substring-before() function292
in chapter summary 275
in function summary 487
referenced 510

sum() function330
in chapter summary 276
in function summary 487
referenced 510

system-property() function207
in chapter summary 175
in function summary 487
referenced 511, 519

T
tables of content

processing 317

template 22-23, 55, 75, 350-353, 407
built-in 159, 164
conflict 159, 165-167, 245
constraints 159, 235
name 159, 232-239
named 55
order 160
rule 55, 148, 158-161, 168
start 26, 136

<xsl:template> instruction159
in chapter summary 138, 213
in instruction summary 483
referenced 88, 182, 500

temporary tree 101, 158, 220, 223-224, 369
terminate= attribute 206
test= attribute

in <xsl:if> 139
in <xsl:when> 140

test() node test 119
text

serialization 36, 136, 192, 269
text input 25-26

text () 119
text { Expr } 371
<xsl:text> instruction371

in chapter summary 359
in instruction summary 483
referenced 93, 236, 500

text node 85, 92, 94, 150, 371, see also node;
text node

time 339-344
time data type 73, 339
timezone-from-date() function343

in chapter summary 278
referenced 511

timezone-from-dateTime() function342
in chapter summary 278
referenced 511

timezone-from-time() function343
in chapter summary 278
referenced 511

to 272, 284
to 242, 284
token data type 73
tokenize() function303

in chapter summary 275
referenced 511

top-level elements 33, 178-179, 182
trace() function205

in chapter summary 174
referenced 511

transform 21

Page 546 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

The XPath keywords covered in this chapter are as follows.
- |

- union operator
- union

- union operator
- intersect

- intersection operator
- except

- exception operator
- to

- create a sequence of integers
- instance of

- testing the type of an item
- castable as

- testing the conversion of an item
- cast as

- converting an item to the given type
- treat as

- validating an item as a given type
- or

- boolean operator
- and

- boolean operator
- is << >>

- document order comparison operators
- eq ne lt le gt ge

- singleton value comparison operators
- = != < <= > >=

- value comparison operators
- some every

- quantified expressions

Page 272 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

<xsl:transform> instruction176
in instruction summary 483
referenced 175, 500

transforming information 19, 45
translate() function293

in chapter summary 275
in function summary 487
referenced 511

treat as 272, 327
true() function331

in chapter summary 274
in function summary 487
referenced 511

tumbler 394
tunnel= attribute

in <xsl:param> 225
in <xsl:with-param> 233

tunnel parameter 225, 233-234, 240, 385
tuples 100, 103-104, 105
Turing complete 22
type= attribute

in <xsl:attribute> 361
in <xsl:copy> 380
in <xsl:copy-of> 380
in <xsl:document> 369
in <xsl:element> 364
in <xsl:result-document> 186, 201

type-available() function204
in chapter summary 175
referenced 511

typographical conventions 2, 96

U
undeclare-prefixes= attribute 194
Unicode 85, 92, 180, 194, 197, 287, 289-290,

293, 302, 332, 399, 445
union 272, 307
union 111, 113, 142, 166, 307, 332, 392, see

also set; union
uniqueness 403, 411
Universal Resource Identifier 30, 77, 81,

92-93, 189-190, 258, 260-261, 262-269,
289, 308-309, 368, 474

unordered() function329
in chapter summary 276
referenced 511

unparsed-entity-public-id() function
258

in chapter summary 214
referenced 511

unparsed-entity-uri() function258
in chapter summary 214
in function summary 487
referenced 511

unparsed-text() function269
in chapter summary 214
referenced 511

unparsed-text-available() function269
in chapter summary 214
referenced 512

unsignedByte data type 73, 283
unsignedInt data type 73, 283
unsignedLong data type 73, 283
unsignedShort data type 73, 283
untypedAtomic data type 73
upper-case() function293

in chapter summary 275
referenced 512

use= attribute 320
use-attribute-sets= attribute 390

in <xsl:attribute-set> 362
in <xsl:copy> 379
in <xsl:element> 364

use-character-maps= attribute
in <xsl:character-map> 199
in <xsl:output> 196
in <xsl:result-document> 196

use-when= attribute 208

V
validation 25, 185, 186, 360, 370
validation= attribute

in <xsl:attribute> 361
in <xsl:copy> 380
in <xsl:copy-of> 380
in <xsl:document> 369
in <xsl:element> 364
in <xsl:result-document> 186, 201

value= attribute 391
value constructor 73
value space 336
<xsl:value-of> instruction150

in chapter summary 138
in instruction summary 483
referenced 54, 149, 236, 361, 500

variable 78, 111, 220-222, 230-231, 264, 320,
354-356, 419-421

variable memory structures 223
<xsl:variable> instruction224

in chapter summary 213
in instruction summary 483
referenced 182, 222, 225, 233, 237, 501

vendor questions 519-522
version= attribute 390

in <xsl:output> 193
in <xsl:stylesheet> 53, 176
in <xsl:transform> 53, 176

version of XSLT 53

Page 547 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

Data type expressions and functions (cont.)
Chapter 7 - Data type expressions and functions

The XSLT instructions covered in this chapter are as follows.

Instruction related to string formatting:
- <xsl:decimal-format>

- control the formatting of numbers when added to the result tree

 Instruction related to string analysis and regular expressions:
- <xsl:analyze-string>

- determine the matching components in an analysis of a string
- <xsl:matching-substring>

- act on matching components from the analysis of a string
- <xsl:non-matching-substring>

- act on non-matching components from the analysis of a string

Instruction related to advanced access to the source node tree:
- <xsl:key>

- declare key nodes in the source tree node for bulk processing

Instruction related to advanced algorithmic techniques:
- <xsl:call-template>

- use named templates with subroutine-like control

Page 273 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

visual media 20
vocabulary, XML 8, 21, 25, 29, 32

W
W3C Schema 14, 25, 73, 100
W3C XSL Working Group 19
Web Accessibility Initiative (WAI) 450
web server 43-44
well-formed XML 8, 25, 84, 176, 374
<xsl:when> instruction140

in chapter summary 138
in instruction summary 484
referenced 501

white-space characters 14, 78, 86-89, 90
wildcard 120
Wireless Markup Language (WML) 69
<xsl:with-param> instruction233

in chapter summary 213
in instruction summary 484
referenced 237, 501

writing direction 469
WSSSL 19

X
XHTML, see Extensible Hypertext Markup

Language (XHTML)
serialization 37, 192

XML, see Extensible Markup Language
(XML)

serialization 192
XML declaration 48, 456
XML Information Set 14, 18

XML namespace 96
XML Path Language (XPath) 7, 71-134
XML Pointer Language (XPointer) 17
XML processor 15, 24-25
XML Query Language (XQuery) 17, 36
xml:id 84, 312
xml:lang 83, 331
xml:space 15, 83, 89, 93
xpath-default-namespace= attribute 180
XSL-FO processor 20
XSLStyleTM 184, 523-526
XSLT processor 14, 22, 24-26
XT XSLT processor 32

Y
year-from-date() function343

in chapter summary 278
referenced 512

year-from-dateTime() function342
in chapter summary 278
referenced 512

yearMonthDuration data type 73
years-from-duration() function344

in chapter summary 278
referenced 512

Z
zero-digit= attribute 295
zero-or-one() function326

in chapter summary 276
referenced 512

Page 548 of 548
Fourteenth Edition - 2011-02-11 - ISBN 978-1-894049-24-5

Information subject to restrictive legend on first page.Copyright © Crane Softwrights Ltd.

Practical Transformation Using XSLT and XPath

